• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite de seno x

Limite de seno x

Mensagempor luiz3107 » Seg Jun 21, 2010 13:55

Posso usar o Teorema do Confronto nesse limite?

\lim_{x\rightarrow0} \frac{x}{sen x}

Gostaria de um outro modo pra resolver essa equação, pois pelo Teorema do Confronto não consegui.
luiz3107
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Sáb Jun 19, 2010 19:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: Limite de seno x

Mensagempor Lucio Carvalho » Seg Jun 21, 2010 15:08

Olá luiz3107,
Uma outra maneira de levantar a indeterminação 0/0 ou infinito/infinito é usando o Teorema de CAUCHY.

Resumidamente, o teorema diz que se tivermos a indeterminação 0/0 ou infinito/infinito na situação \lim_{x\rightarrow{a}}\frac{f(x)}{g(x)}

Procedemos da seguinte maneira:

\lim_{x\rightarrow{a}}\frac{f(x)}{g(x)}=\lim_{x\rightarrow{a}}\frac{f'(x)}{g'(x)}

Assim,

\lim_{x\rightarrow0}\frac{x}{senx}=\lim_{x\rightarrow0}\frac{1}{cosx}=\frac{1}{1}=1

Outro exemplo:

\lim_{x\rightarrow0}\frac{{e}^{x}-1}{x}=\lim_{x\rightarrow0}\frac{{e}^{x}}{1}=\frac{1}{1}=1

Como podes notar a derivada de {e}^{x}-1 é {e}^{x}

e a derivada de x é 1.

Espero ter ajudado!
Avatar do usuário
Lucio Carvalho
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 127
Registrado em: Qua Ago 19, 2009 11:33
Localização: Rua 3 de Fevereiro - São Tomé
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física/Química
Andamento: formado

Re: Limite de seno x

Mensagempor MarceloFantini » Ter Jun 22, 2010 01:43

Você já aprendeu o limite fundamental \lim_{x \to 0} \frac{senx}{x} =1? Se sim, esse daí não precisa nem de L'Hospital.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.