• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral do módulo?

Integral do módulo?

Mensagempor Questioner » Dom Mai 16, 2010 18:15

Olá,

Estou com uma dúvida na seguinte questão:

Se f(a) = \int_{0}^{2}|x(x-a)|dx para 0\leq a \leq 2.

Encontre a função f(a)

O gabarito seria:

-\int_{0}^{a}x(x-a)dx - \int_{a}^{2} x(x-a)dx
Que seria igual a \frac{a³}{3}-2a+\frac{8}{3}

Tudo bem, resolver a integral é fácil. Mas, teoricamente, por que separar as integrais de 0 a A e de A a 2? E por que elas devem ficar negativas?

Valeu!
Questioner
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Abr 20, 2010 22:13
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Integral do módulo?

Mensagempor Cahu » Qua Abr 20, 2011 23:11

Se f(a) = \int_{0}^{2}|x(x-a)|dx para 0\leq a \leq 2.

como o 0<a<2 e 0<x<2 entao para x(x-a) com x<a temos que o resultado dessa integral é negativa, por isso o sinal de menos e a divisão para 2 integrais, a segunda parte pode ser feita normalmente pois o valor é positivo e não precisa do sinal de menos.

-\int_{0}^{a}x(x-a)dx + \int_{a}^{2} x(x-a)dx
Cahu
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Abr 20, 2011 23:00
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrônica
Andamento: cursando

Re: Integral do módulo?

Mensagempor LuizAquino » Qui Abr 21, 2011 09:38

Questioner escreveu:Mas, teoricamente, por que separar as integrais de 0 a A e de A a 2? E por que elas devem ficar negativas?


Do ponto de vista teórico, é necessário apenas lembrar da definição de módulo de um número real x:

|x| = \begin{cases}x\textrm{, se } x\geq 0 \\ -x\textrm{, se } x < 0\end{cases}

Desse modo, aplicando a definição para |x(x-a)| (lembrando que 0\leq a \leq 2 e 0\leq x \leq 2 neste exercício):

|x(x-a)| = \begin{cases}x(x-a)\textrm{, se } x(x-a) \geq 0 \\ -x(x-a)\textrm{, se } x(x-a) < 0\end{cases} \Rightarrow |x(x-a)| = \begin{cases}x(x-a)\textrm{, se } x \geq a \\ -x(x-a)\textrm{, se } x < a\end{cases}

Portanto, temos que:
f(a) = \int_{0}^{2}|x(x-a)|dx = -\int_{0}^{a}x(x-a)\,dx + \int_{a}^{2} x(x-a)\,dx = \frac{1}{3}a^3 - 2a + \frac{8}{3} .

Note que apenas na primeira integral deve aparecer o sinal negativo antes dela.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59