por victorino29 » Sáb Set 17, 2022 00:48
Quem pode me "ensinar" a resolver a questão? Obetenha, caso exista, a equação da assintota vertical para a função f(x)=x+4/(x-5)^2
-
victorino29
- Novo Usuário
-
- Mensagens: 5
- Registrado em: Dom Mai 24, 2020 20:17
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Redes
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [LIMITE] assintota vertical
por beel » Seg Set 05, 2011 12:58
- 2 Respostas
- 3067 Exibições
- Última mensagem por Jhonata
Dom Mai 27, 2012 00:17
Cálculo: Limites, Derivadas e Integrais
-
- Assintota vertical e horizontal
por Zercamga » Seg Set 17, 2012 12:30
- 6 Respostas
- 9458 Exibições
- Última mensagem por Zercamga
Ter Set 18, 2012 17:32
Cálculo: Limites, Derivadas e Integrais
-
- [Limite]será que existe assintota vertical aqui?
por marcosmuscul » Ter Mai 21, 2013 12:03
- 1 Respostas
- 3319 Exibições
- Última mensagem por LuizAquino
Dom Mai 26, 2013 02:48
Cálculo: Limites, Derivadas e Integrais
-
- Assintota obliqua de uma função
por Fernandobertolaccini » Seg Ago 18, 2014 18:24
- 0 Respostas
- 1995 Exibições
- Última mensagem por Fernandobertolaccini
Seg Ago 18, 2014 18:24
Cálculo: Limites, Derivadas e Integrais
-
- Dúvida: Assíntota Horizontal de uma função
por Jhonata » Sáb Mai 26, 2012 18:01
- 1 Respostas
- 2823 Exibições
- Última mensagem por MarceloFantini
Dom Mai 27, 2012 15:37
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.