por adauto martins » Seg Abr 12, 2021 15:59
(ITA-1952) calcular o
![\lim_{n\rightarrow\infty}\sqrt[n]{n!}/n \lim_{n\rightarrow\infty}\sqrt[n]{n!}/n](/latexrender/pictures/516fbc781b5ecbd5e20c5ecb3e48d7d1.png)
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por adauto martins » Seg Abr 12, 2021 17:04
soluçao
precisarei de dois argumentos para resolver esse exercicio
o limite fundamental

e o limite,que é consequencia do limite fundamental apresentado

de fato,

façamos

logo

voltemos a questao
![L=\sqrt[n]{n!}/n=\sqrt[n]{n!/n^{n}}=((n.(n-1)....2.1)/n^{n})^{1/n}
=((n/n).(n-1)/n....(2/n).(1/n))^{1/n}
=(1-1/n)^{1/n}.(1-2/n)^{1/n}
....(1-(n-2)/n)^{1/n}.(1-(n-1)/n)^{1/n} L=\sqrt[n]{n!}/n=\sqrt[n]{n!/n^{n}}=((n.(n-1)....2.1)/n^{n})^{1/n}
=((n/n).(n-1)/n....(2/n).(1/n))^{1/n}
=(1-1/n)^{1/n}.(1-2/n)^{1/n}
....(1-(n-2)/n)^{1/n}.(1-(n-1)/n)^{1/n}](/latexrender/pictures/7b48c61ca11a250ee37a3516d36c757e.png)
façamos

entao
![\sqrt[n]{n!}/n=(1+y)^{-1/y}.(1+2y)^{-2/y}....(1+(n-1)y)^{-(n-1)/y}
\lim_{y\rightarrow0}((1+y)^{-1/y}.(1+2y)^{-2/y}....(1+(n-1)y)^{-(n-1)/y})
(\lim_{y\rightarrow0}(1+y)^{-1/y})....(\lim_{y\rightarrow0}(1+(n-1)y)^{-(n-1)/y}) \sqrt[n]{n!}/n=(1+y)^{-1/y}.(1+2y)^{-2/y}....(1+(n-1)y)^{-(n-1)/y}
\lim_{y\rightarrow0}((1+y)^{-1/y}.(1+2y)^{-2/y}....(1+(n-1)y)^{-(n-1)/y})
(\lim_{y\rightarrow0}(1+y)^{-1/y})....(\lim_{y\rightarrow0}(1+(n-1)y)^{-(n-1)/y})](/latexrender/pictures/2b6affca442fc9b24cf49ad3d80b7bcb.png)

-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- exercicio resolvido
por adauto martins » Sex Jul 15, 2016 14:48
- 0 Respostas
- 19931 Exibições
- Última mensagem por adauto martins

Sex Jul 15, 2016 14:48
Teoria dos Números
-
- exercicio resolvido
por adauto martins » Qua Jul 20, 2016 18:35
- 0 Respostas
- 18336 Exibições
- Última mensagem por adauto martins

Qua Jul 20, 2016 18:35
Cálculo: Limites, Derivadas e Integrais
-
- exercicio resolvido
por adauto martins » Ter Jul 26, 2016 17:43
- 0 Respostas
- 8837 Exibições
- Última mensagem por adauto martins

Ter Jul 26, 2016 17:43
Cálculo: Limites, Derivadas e Integrais
-
- exercicio resolvido
por adauto martins » Sáb Ago 13, 2016 11:28
- 0 Respostas
- 4382 Exibições
- Última mensagem por adauto martins

Sáb Ago 13, 2016 11:28
Teoria dos Números
-
- exercicio resolvido
por adauto martins » Sex Out 18, 2019 14:29
- 2 Respostas
- 8994 Exibições
- Última mensagem por adauto martins

Sex Out 18, 2019 15:42
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.