• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(Derivadas)- Cálculo A

(Derivadas)- Cálculo A

Mensagempor Matheus1999 » Seg Jan 25, 2021 14:15

Olá, eu estou com um pouco de dúvida na resolução destas 2 derivadas, eu tentei resolve-las, mas acabo sempre por "travar".
O enunciado diz o seguinte: "Utilizando a regra das derivadas, determine o y'"
Em anexo, uma imagem contendo as derivadas.
OBS: Desculpem-me por qualquer erro, esse é o primeiro tópico que criei aqui no fórum.
Anexos
20210125_131310.png
Matheus1999
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Nov 17, 2020 04:02
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: (Derivadas)- Cálculo A

Mensagempor DanielFerreira » Sex Abr 02, 2021 18:23

Olá Matheus1999, seja bem-vindo!

Matheus1999 escreveu:Utilizando a regra das derivadas, determine o y

(e) \ y = x \cdot \tanh^{- 1} \sqrt{x}


Para solucionar este item, precisamos saber que \boxed{\mathbf{\frac{d}{dx} \tanh^{- 1} x = \frac{1}{1 - x^2}, \ se - 1 < x < 1}}.

Seja \mathbf{z = \tanh^{- 1} \sqrt{x}}. Determinemos sua derivada considerando \mathsf{\sqrt{x} = \lambda}. Com efeito, implica que \mathsf{d\lambda = \frac{\sqrt{x}}{2x} dx}. Daí,

\\ \mathsf{z = \tanh^{- 1} \sqrt{x}} \\\\ \mathsf{z = \tanh^{- 1} \lambda} \\\\ \mathsf{dz = \frac{1}{1 - \lambda^2} d\lambda} \\\\ \mathsf{dz = \frac{1}{1 - x} \cdot \frac{\sqrt{x}}{2x} dx} \\\\ \boxed{\mathsf{\frac{d}{dx} \left ( \tanh^{- 1} \sqrt{x} \right ) = \frac{\sqrt{x}}{2x(1 - x)}}}

Por fim, aplicando a regra do produto:

\\ \mathsf{y = x \cdot \tanh^{- 1} \sqrt{x}} \\\\ \mathsf{dy = \left [ 1 \cdot \tanh^{- 1} \sqrt{x} + x \cdot \frac{\sqrt{x}}{2x(1 - x)}  \right ] dx} \\\\ \mathsf{\frac{dy}{dx} = \tanh^{- 1} \sqrt{x} + \frac{\sqrt{x}}{2(1 - x)}} \\\\ \boxed{\boxed{\mathsf{\frac{d}{dx} \left ( x \cdot \tanh^{- 1} \sqrt{x} \right ) = \tanh^{- 1} \sqrt{x} + \frac{\sqrt{x}}{2(1 - x)}}}}

\mathsf{\forall \, x \in \mathbb{R}; \, 0 \leq x < 1}.


Quanto ao outro item, podes passar o fator que está fora da raiz para dentro e aplicar a regra da cadeia!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1722
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}