• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Duvida no exercícios de calculo II

Duvida no exercícios de calculo II

Mensagempor 1marcus » Dom Abr 26, 2020 16:32

Alo, então estou tendo dificuldade com estes exercícios, se poderem me ajuda agradeço,

1)qual é o valor da area total da região compreendida pelo grafico da função f(x)=sen(2x) e o eixo no intervalo [0,3π]?



2)qual é o area da região entre os gráficos de f(x)=\sqrt{x+7} e g(x)=0,5(x+7)?


3)em algumas aplicações na engenharia precisamos determinar a area de placas finas descritas por uma regiao no plano. Qual é a area da placa fina que cobre a região no primeiro quadrante pelo circilos x^{2}+y^{2}=a^{2}
1marcus
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Nov 02, 2018 15:44
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Duvida no exercícios de calculo II

Mensagempor adauto martins » Sex Mai 01, 2020 18:55

1)

A=\int_{0}^{3\pi}sen(2x)dx

fazendo-se

u=2x\Rightarrow du=2dx

A=(1/2)\int_{u(0)}^{u(3\pi)}sen(u) du

A=(1/2).(-cosu)[0,6\pi]...

termine-o...

2)

aqui achar os pontos de intersecçao das curvas(pontos comuns)

\sqrt[]{(x+7)}=(1/2)(x+7)\Rightarrow
        x+7=(1/4)(x+7)^{2}

achando os valores de x,determina-se o intervalo de integraçao

A=\int_{{x}_{1}}^{{x}_{2}}(1/2)(x+7)-\sqrt[]{(x+7)}dx

onde

{x}_{2}\succ {x}_{1}

termine-o...

3)

aqui usaremos coordenadas polares

x=rcos\theta

y=rsen\theta

{x}^{2}+{y}^{2}={(rcos\theta)}^{2}+{(rsen\theta)}^{2}={a}^{2}\Rightarrow

{r}^{2}({cos\theta}^{2}+{sen\theta}^{2})={a}^{2}\Rightarrow

r=a
pois,
{cos\theta}^{2}+{sen\theta}^{2}=1





A=\int_{0}^{\pi/2}({(acos\theta)}^{2}+{(asen\theta)}^{2})a.(-sen\theta) d\theta

pois,
x=acos\theta \Rightarrow dx=a(-sen\theta)d\theta

termine-o...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1032
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Duvida no exercícios de calculo II

Mensagempor adauto martins » Sáb Mai 02, 2020 14:57

uma correçao no iem 3)

A=\int_{0}^{a}y dx=\int_{0}^{\pi/2}a.sen\theta.(-acos\theta)d\theta


A=-{a}^{2}\int_{0}^{\pi/2}sen\theta.cos\theta d\theta


A={a}^{2}\int_{\pi/2}^{0}sen\theta.cos\theta d\theta

aqui usaremos a identidade trigonometrica

cosx.senx=cos(2x)/2

logo

A=({a}^{2}/2)\int_{\pi/2}^{0}cos(2\theta)d\theta

faz-se

u=2\theta\Rightarrow du=2d\theta

A=({a}^{2}/4)\int_{\pi/2}^{0}cos(u)du...

termine-o...obrigado
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1032
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.