• Anúncio Global
    Respostas
    Exibições
    Última mensagem

polinomio de taylor

polinomio de taylor

Mensagempor ezidia51 » Ter Set 24, 2019 00:09

Tenho estes dois exercicios de polinomio de taylor mas não estou conseguindo resolver.Alguém poderia me ajudar?
exerc 1 Se P3(x)=3-4x+2x^2-2x^3 é o polinomio de taylor de ordem 3,em torno de x=0 de uma função f com derivadas contínuas ate pelo menos a terceira ordem,então quais os valores de f(0),f'(0),f"(0)e f'''(0)??????

exerc 2 SEJAM F UMA FUNÇÃO POLINOMIAL DE GRAU 3 E Px SEU POLINOMIO DE TAYLOR DE ORDEM K EM TORNO DE X=0 QUAIS AS AFIRMAÇÕES VERDADEIRAS E FALSAS???
1 p3(x)=f(x),\forall x \in\Re

para todo k\geq3,Pk(x)=P3,\forallx\in\Re

para todo k\geq 0, Pk(x)=P3,\forallx\in\Re
(fiquei perdida nesta questão)

exerc 3 utilizando o polinomio de taylor de ordem 2 da função f(x)=lnx,em torno de x=1,obtendo como um valor aproximado para ln(1,4)???
ln(1,4)=0,32???(Não consigui desenvolver)
ezidia51
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 104
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: polinomio de taylor

Mensagempor adauto martins » Ter Set 24, 2019 16:28

farei a (3)...
f(x)=f(1.4)+(f'(1.4).(x-1.4)/1!)+(f''(1.4).(x-1.4)/2!)...
f(x)=ln(1.4)+((1/1.4).(x-1.4))-((1/({1.4})^{2}).(x-1.4)/2)
f(x)=0.32+(.(x-1.4)/1.4)-((x-1.4)/3.92)...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: polinomio de taylor

Mensagempor adauto martins » Ter Set 24, 2019 17:19

cara izidia,
a soluçao apresentada nao esta correta,depois a farei pra vc...obrigado...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: polinomio de taylor

Mensagempor adauto martins » Ter Set 24, 2019 18:28

f(x)=f(1)+(f'(1).(x-1)/1!)+(f''(1).{(x-1)}^{2})/2!)

f(x)=ln(1)+((1/x).(x-1))+((-1/({x}^{2})){(x-1)}^{2}

f(x)=0+(1/1.4).(1.4-1)-(1/(({1.4})^{2}).{(1.4-1)}^{2}

f(x)=0.285-0.082=0.203...
confira minhas contas,erro muito.princ. usando esse latex...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: polinomio de taylor

Mensagempor ezidia51 » Ter Set 24, 2019 23:30

:y: :y: :y: :y: :y: Um super muito obrigado.Se vc puder me ajudar com o exerc 1 e 2 eu ficarei muito agradecida!!!Valeu mesmo!!! :y: :y: :y: :y:
ezidia51
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 104
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: polinomio de taylor

Mensagempor adauto martins » Qua Set 25, 2019 21:22

(2)
todas as afirmativas feitas nessa questao sao falsas,como foram colocadas,pois:
quando se faz representar uma funçao f,continua e n-vezes diferencial,em uma serie de taylor nas proximidades de um dado ponto x={x}_{0},estamos estimando um calculo,um valor dessa funçao em termos de um polinomio,no caso polinomio de taylor.e portanto uma estimativa.segue-se matematicamente:
seja f:\Re\rightarrow\Re,continua e n-vezes diferencialvel,entao,podemos escrever:


f(x)=f(a)+f'(a).((x-a)/1!)+f''(a)((x-a)^2)/2!)+...+{f}^{n'}(({x-a}^{n})/n!)+r(x,a)
quando n\rightarrow\infty,mais preciso estamos do valor numerico de tal funçao no ponto "a"...
essa estimativa e dada por:
\lim_{x\rightarrow\infty}\left|(f(x)-p(x))/{(x-a)}^{n} \right|=0
questao (1),uma correçao:
f(x)=0+(1/1).(1.04-1)-(1/(2.(1^2)).((1.4-1)^2)=0.32
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: polinomio de taylor

Mensagempor ezidia51 » Qua Set 25, 2019 23:49

:y: :y: :y: :y: :y: :y: muito obrigada mesmo!!Valeu
ezidia51
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 104
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 41 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D