• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integração por Partes] Constante de integração

[Integração por Partes] Constante de integração

Mensagempor KleinIll » Dom Set 01, 2019 14:11

A fórmula de integração por partes separa as funções em duas partes: uma carrega uma função escolhida u e o restante é denominado dv. Para aplicar a fórmula de integração por partes, é necessário integrar dv para encontrar v. Nesta etapa, haverá uma constante de integração. A minha dúvida é: no produto entre u e v, o v deve conter a constante de integração?

uv - \int_{}^{}vdu
v = x + c
u(x+c)-\int_{}^{}x+cdu
??? ?? ? ????, ? ? ??????.
Avatar do usuário
KleinIll
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Out 31, 2012 14:17
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: formado

Re: [Integração por Partes] Constante de integração

Mensagempor DanielFerreira » Qui Set 05, 2019 22:56

KleinIll escreveu:A fórmula de integração por partes separa as funções em duas partes: uma carrega uma função escolhida u e o restante é denominado dv. Para aplicar a fórmula de integração por partes, é necessário integrar dv para encontrar v. Nesta etapa, haverá uma constante de integração. A minha dúvida é: no produto entre u e v, o v deve conter a constante de integração?

uv - \int_{}^{}vdu
v = x + c
u(x+c)-\int_{}^{}x+cdu


KleinIll, não precisa! A constante de integração só aparecerá quando você integrar

\mathsf{- \int v \, du}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1727
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [Integração por Partes] Constante de integração

Mensagempor KleinIll » Sex Set 06, 2019 18:39

Daniel, a dúvida era exatamente a integração que dá origem ao v da fórmula de integração por partes. Contudo, refiz as contas e descobri que eu tinha ignorado um número. Depois de consertar o erro, as constantes de integração, tanto para v quanto para a integral da fórmula, anularam-se.

Agradeço a atenção.
??? ?? ? ????, ? ? ??????.
Avatar do usuário
KleinIll
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Out 31, 2012 14:17
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?