• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Qual o limite de [(2-x)^4-16]/x quando X tende a 0

Qual o limite de [(2-x)^4-16]/x quando X tende a 0

Mensagempor Therodrigou » Qua Jun 20, 2018 06:46

Olá! o que deve fazer, na expressão a seguir, para que ela seja igual a -32

[(2-x)^4-16]/x

quando X tende a 0

Obrigado pela atenção!
Therodrigou
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Qua Jun 20, 2018 06:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia mecânica
Andamento: cursando

Re: Qual o limite de [(2-x)^4-16]/x quando X tende a 0

Mensagempor Gebe » Qua Jun 20, 2018 18:35

Ja que substituindo o 0 (zero) na expressão obtemos uma indeterminação 0/0, podemos utilizar a regra de l'Hopital.
Assim o LIMITE da expressão é igual ao da expressão com o numerador e o denominador derivados, ou seja:

\lim_{x\rightarrow0}\frac{(2-x)^4-16}{x}=\lim_{x\rightarrow0}\frac{ \frac{d\left((2-x)^4-16 \right)}{dx} }{\frac{d\left(x \right)}{dx}}


Resolvendo então temos:
\lim_{x\rightarrow0}\frac{ \frac{d\left((2-x)^4-16 \right)}{dx} }{\frac{d\left(x \right)}{dx}} = \lim_{x\rightarrow0}\frac{4*(2-x)^3*(-1)}{1}=\\
=\lim_{x\rightarrow0}-4(2-x)^3=-4*(2-0)^3=-4*8=-32

Espero ter ajudado, se ficar alguma duvida na resolução mande msg.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 158
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: Qual o limite de [(2-x)^4-16]/x quando X tende a 0

Mensagempor Therodrigou » Qua Jun 20, 2018 22:54

vlw!
Therodrigou
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Qua Jun 20, 2018 06:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia mecânica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?