• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Qual o limite de [(2-x)^4-16]/x quando X tende a 0

Qual o limite de [(2-x)^4-16]/x quando X tende a 0

Mensagempor Therodrigou » Qua Jun 20, 2018 06:46

Olá! o que deve fazer, na expressão a seguir, para que ela seja igual a -32

[(2-x)^4-16]/x

quando X tende a 0

Obrigado pela atenção!
Therodrigou
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qua Jun 20, 2018 06:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia mecânica
Andamento: cursando

Re: Qual o limite de [(2-x)^4-16]/x quando X tende a 0

Mensagempor Gebe » Qua Jun 20, 2018 18:35

Ja que substituindo o 0 (zero) na expressão obtemos uma indeterminação 0/0, podemos utilizar a regra de l'Hopital.
Assim o LIMITE da expressão é igual ao da expressão com o numerador e o denominador derivados, ou seja:

\lim_{x\rightarrow0}\frac{(2-x)^4-16}{x}=\lim_{x\rightarrow0}\frac{ \frac{d\left((2-x)^4-16 \right)}{dx} }{\frac{d\left(x \right)}{dx}}


Resolvendo então temos:
\lim_{x\rightarrow0}\frac{ \frac{d\left((2-x)^4-16 \right)}{dx} }{\frac{d\left(x \right)}{dx}} = \lim_{x\rightarrow0}\frac{4*(2-x)^3*(-1)}{1}=\\
=\lim_{x\rightarrow0}-4(2-x)^3=-4*(2-0)^3=-4*8=-32

Espero ter ajudado, se ficar alguma duvida na resolução mande msg.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 152
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: Qual o limite de [(2-x)^4-16]/x quando X tende a 0

Mensagempor Therodrigou » Qua Jun 20, 2018 22:54

vlw!
Therodrigou
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qua Jun 20, 2018 06:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia mecânica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 15 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.