• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites com 2 variáveis

Limites com 2 variáveis

Mensagempor rstoque » Seg Jun 04, 2018 17:29

Estou com uma dúvida a respeito da resolução deste limite, pois quando eu tento resolvê-lo eu me confundo na hora de utilizar produtos notáveis no numerador.

\lim_{(x,y) \rightarrow \ (1,1)}{\frac{(x-1)^{4/3}-(y-1)^{4/3}}{(x-1)^{2/3}+(y-1)^{2/3}}}

Eu poderia desmembrar o numerador desta função assim...
\frac{(x-1)^{2/3}-(y-1)^{2/3}\cdot (x-1)^{2/3}+(y-1)^{2/3}}{(x-1)^{2/3}+(y-1)^{2/3}} ???

estou agarrado nessa resolução porque não estou concordando com ela, mas ao mesmo tempo ela faz sentido aff

desde já agradeço pessoal, abraços
rstoque
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Jun 04, 2018 17:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.