• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida sobre max/min em intervalo definido

Dúvida sobre max/min em intervalo definido

Mensagempor Eureka__ » Qua Mai 02, 2018 14:01

QUESTÃO: Seja f: D -> R, onde f(x, y) = 2x² + x + y² - 2.

b) Determine os pontos (x, y) pertencentes a D de máximo e mínimo absolutos de f, considerando D = {(x, y) pertencente a R2 | x² + y² <= 4}

Não sei prosseguir daqui ou se o raciocínio até então está correto, mas:
1 – Localizei o ponto crítico que é P(-1/4, 0)

2 – Identifiquei o intervalo em que x e y variam na dada circunferência de raio 2 no plano xy:
-2<=x<=2
-2<=y<=2

3 – Agora, segundo entendi dos teoremas pertinentes (Weierstrass) e algumas aulas que assisti bastaria aplicar a função nos extremos desse intervalo (fronteira). O problema é que todos exemplos foram dados usando retângulos e não sei se o raciocínio a seguir está correto para este caso.

Os pontos de estudo seriam:
f(x,-2), f(x,2), f(-2,y),f(2,y) e então bastaria pegar o menor e maior valor desses pontos calculados para x = -2, x= 2, y=-2 e y=2?
Eureka__
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Mai 02, 2018 13:54
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 28 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.