• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cálculo] Simplificação algébrica para determinar limites

[Cálculo] Simplificação algébrica para determinar limites

Mensagempor Reh » Qua Fev 28, 2018 02:41

Olá pessoal, estou com dificuldadade para simplificar essa função algebricamente. Caso alguém tenha uma forma de solucionar eu agradeço se puder compartilhar. O objetivo é simplificar para remover a indeterminação e encontrar o limite. Eu consegui encotrar o valor -2 como sendo o limite. Mas acho que cometi algum erro na resolução. Corrijam-me por favor se estiver errado.

\lim_{x\rightarrow64}    \frac{\sqrt[3]{x} - 4}{\sqrt{x} - 8}
Reh
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Jul 20, 2016 13:45
Formação Escolar: GRADUAÇÃO
Área/Curso: COMPUTAÇÃO
Andamento: cursando

Re: [Cálculo] Simplificação algébrica para determinar limite

Mensagempor Oliverprof » Qua Fev 28, 2018 22:11

Vc tem o gabarito?Encontrei 1/24
Oliverprof
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Fev 28, 2018 19:28
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matematica
Andamento: formado

Re: [Cálculo] Simplificação algébrica para determinar limite

Mensagempor Reh » Qui Mar 01, 2018 00:11

Infelizmente não tenho o gabarito. Seria interessante ver como chegou ao 1/24.
Reh
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Jul 20, 2016 13:45
Formação Escolar: GRADUAÇÃO
Área/Curso: COMPUTAÇÃO
Andamento: cursando

Re: [Cálculo] Simplificação algébrica para determinar limite

Mensagempor Oliverprof » Qui Mar 01, 2018 19:53

É que não sei enviar por aqui.Fiz pela formula da diferença entre cubos
Oliverprof
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Fev 28, 2018 19:28
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matematica
Andamento: formado

Re: [Cálculo] Simplificação algébrica para determinar limite

Mensagempor DarioCViveiros » Qui Mar 01, 2018 23:50

\lim_{x\rightarrow64}\frac{\sqrt[3]{x}-4}{\sqrt[]{x}-8}


\lim_{x\rightarrow64}\frac{(\sqrt[]{\sqrt[3]{x}}-2)(\sqrt[]{\sqrt[3]{x}}+2)}{(\sqrt[3]{\sqrt[]{x}}-2)(({\sqrt[3]{\sqrt[]{x}}})^{2}+2\sqrt[3]{\sqrt[]{x}}+4)}


\lim_{x\rightarrow64}\frac{(\sqrt[6]{x}-2)(\sqrt[6]{x}+2)}{(\sqrt[6]{x}-2)(({\sqrt[6]{x}})^{2}+2\sqrt[6]{x}+4)}


\lim_{x\rightarrow64}\frac{\sqrt[6]{x}+2}{({\sqrt[6]{x}})^{2}+2\sqrt[6]{x}+4}


R=\frac{2+2}{({2})^{2}+2*2+4}


R=\frac{2+2}{4+4+4}


R=\frac{4}{12}


R=\frac{1}{3}


Está certo?
DarioCViveiros
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Fev 21, 2018 16:33
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.