através do uso de
. Gostaria de saber se a minha demonstração está certa e, se não estiver, quais os problemas.Demonstração:
(1)Onde:
, e
logo,

sendo assim,
com:
![\delta = min[b-p,p+a] \Rightarrow p - \delta < x < p + \delta \delta = min[b-p,p+a] \Rightarrow p - \delta < x < p + \delta](/latexrender/pictures/7dc158336d2e10d06988b41e31d6174b.png)
e:

sendo
uma generalização das funções
que formam a forma geral de um polinômio (1).Logo:
![x\in ]a,b[ \Rightarrow x \in ]b-p,p+a[ \Rightarrow p-\delta < x < p + \delta x\in ]a,b[ \Rightarrow x \in ]b-p,p+a[ \Rightarrow p-\delta < x < p + \delta](/latexrender/pictures/e3fe7c48c3db42378d1b0502a8c94b3f.png)
e, para encontrar o intervalo aberto I que torna contínua a função
, toma-se
com
, que resulta:
,logo:
![I=]\sqrt[b]{\frac{a{p}^{b}-\epsilon}{a}},\sqrt[b]{\frac{a{p}^{b}+\epsilon}{a}}[ I=]\sqrt[b]{\frac{a{p}^{b}-\epsilon}{a}},\sqrt[b]{\frac{a{p}^{b}+\epsilon}{a}}[](/latexrender/pictures/32897c97d27c61ea0118f186a1751d20.png)
o que implica que:
![\exists(\epsilon>0\rightarrow\delta>0)|\forall x\in {D}_{f}\rightarrow\exists(I=]a,b[,p\in I)|x\in I\Rightarrow
f(p)-\epsilon<f(x)<f(p)+\epsilon \exists(\epsilon>0\rightarrow\delta>0)|\forall x\in {D}_{f}\rightarrow\exists(I=]a,b[,p\in I)|x\in I\Rightarrow
f(p)-\epsilon<f(x)<f(p)+\epsilon](/latexrender/pictures/edb731ac9fddebb10e6e8227934da1cf.png)
com:
,comprovando que todo polinômio é contínuo
.Baseie-me aqui nos métodos mostrados no próprio livro, o qual envolve um intervalo aberto no domínio da função, ainda que não tenha encontrado referências a este em outras fontes, como em "Calculus" de Spivak.
Espero receber críticas à minha demonstração em breve, de forma que possa aprimorar o meu conhecimento sobre continuidade. Agradeço desde já.

![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.