por rebekrl » Dom Dez 17, 2017 14:37
Um país tem 100 bilhões de metros cúbicos de reserva de gás natural. Se A(t) denota o total de gás consumido após t anos, então dA/dt é a taxa de consumo. Se a taxa de consumo é prevista pela equação dA/ dt = 5+ 0,01t bilhões de metros cúbicos por ano, calcule o tempo aproximado (em anos) em que as reservas estarão esgotadas.(res:19,62)
Primeiro eu resolvi a integral da função dada na questão, obtendo: 5t+0,005t²+C
Eu peguei o que eu achei e igualei a 100.
100=5t+0,005t²
5t+0,005t²-100
Resolvi usando o método de Bhaskara e o resultado é t=4,47 t'=-4,47
Não estou conseguindo chegar ao resultado.
-
rebekrl
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Dom Dez 17, 2017 14:21
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia ambiental
- Andamento: cursando
por jbandrade1618 » Qui Jan 11, 2018 12:46
A resolução da integral está correta, porém seu erro foi ao realizar a Bhaskara, refaça-a e você encontrará o resultado sem problemas.
![\Rightarrow t=\frac{-5+\sqrt[2]{{5}^{2}-4.(0,005).(-100)}}{2.(0,005)}= \frac{-5+5,1962}{0,01}= \frac{0,1962}{0,01}=19,62
\Rightarrow t=19,62 \Rightarrow t=\frac{-5+\sqrt[2]{{5}^{2}-4.(0,005).(-100)}}{2.(0,005)}= \frac{-5+5,1962}{0,01}= \frac{0,1962}{0,01}=19,62
\Rightarrow t=19,62](/latexrender/pictures/be8d15bb170403b158b58ed9fb7eadc1.png)
Espero ter ajudado.

-
jbandrade1618
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Jan 11, 2018 01:18
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [calculo] calculo de integral - coordenada esferica
por fatalshootxd » Ter Mar 31, 2015 00:43
- 1 Respostas
- 4352 Exibições
- Última mensagem por adauto martins

Sáb Abr 04, 2015 16:13
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo Integral] Integral Definida
por ARCS » Sáb Fev 02, 2013 21:37
- 2 Respostas
- 3453 Exibições
- Última mensagem por e8group

Sáb Fev 02, 2013 22:13
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Cálculo de integral
por LAZAROTTI » Dom Set 30, 2012 19:52
- 0 Respostas
- 1124 Exibições
- Última mensagem por LAZAROTTI

Dom Set 30, 2012 19:52
Cálculo: Limites, Derivadas e Integrais
-
- cálculo de integral
por jmario » Ter Mai 18, 2010 12:25
- 1 Respostas
- 3171 Exibições
- Última mensagem por MarcosFreitas

Qua Jun 02, 2010 13:04
Cálculo: Limites, Derivadas e Integrais
-
- CALCULO DE INTEGRAL
por Jaison Werner » Sex Jan 07, 2011 18:58
- 4 Respostas
- 2983 Exibições
- Última mensagem por MarceloFantini

Sáb Jan 08, 2011 12:48
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.