• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivação de funções trigonometrias com argumentos dif. de x

Derivação de funções trigonometrias com argumentos dif. de x

Mensagempor Franck FK » Dom Dez 10, 2017 18:10

Não tenho nenhuma ideia do que fazer quando o argumento é diferente de x.
Exemplo: y = sen(\frac{\pi}{2} - x) , como faço para achar a sua derivada?
Franck FK
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Dez 10, 2017 17:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engª de Telecomunicações
Andamento: cursando

Re: Derivação de funções trigonometrias com argumentos dif.

Mensagempor jbandrade1618 » Qui Jan 11, 2018 13:13

Olá Franck.

Podemos trocar de variável ao realizar a derivada, tornando o problema mais simples, veja:

\frac{\pi}{2}-x=\theta\Rightarrow y=sen(\frac{\pi}{2}-x)=ysen\theta \Rightarrow dy=d[sen(\theta)]=d\theta.dsen(\theta)

Como d\theta=d(\frac{\pi}{2}-x)=d(\frac{\pi}{2})-dx=-dx=-1
Portanto, tem-se:
y=d\theta.dsen(\theta)=(-1)cos(\frac{\pi}{2}-x)=-[cos(\frac{\pi}{2}).cosx+sen(\frac{\pi}{2}).senx]=-senx

Espero ter ajudado. :y:
jbandrade1618
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Jan 11, 2018 01:18
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Derivação de funções trigonometrias com argumentos dif.

Mensagempor Romario_rj » Qua Abr 11, 2018 00:11

Show,grande ajuda.
Romario_rj
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Abr 09, 2018 21:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.