• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Duvida fácil limites

Duvida fácil limites

Mensagempor mataprendizagem » Dom Ago 20, 2017 20:13

Boa noite galera, tentei fazer o exercicio de 4 jeitos diferentes mas nao deu certo . Alguem sabe?
para an-1 sendo an>= 2 calculei a2-1 = 1 então an=1+(-1)^²=2 e sucessivamente para 6 primeiros termos. Adotei 1 para an-1 em todos os termos da série zerando todos com expoente ímpar mas não estou certo disso.
Anexos
duvidalimite.jpg
mataprendizagem
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Ago 20, 2017 20:10
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia
Andamento: cursando

Re: Duvida fácil limites

Mensagempor DanielFerreira » Sex Ago 25, 2017 22:36

Olá! seja bem-vindo(a)!!

Atente para o fato de n ser maior ou igual a dois. Assim, o que temos a fazer é determinar os seis termos substituindo...

Primeiro termo: a_2

\\ \mathsf{a_n = a_{n - 1} + (- 1)^n} \\\\ \mathsf{a_2 = a_{2 - 1} + (- 1)^2} \\\\ \mathsf{a_2 = a_1 + 1} \\\\ \mathsf{a_2 = 1 + 1} \\\\ \boxed{\mathsf{a_2 = 2}}


Segundo termo: a_3

\\ \mathsf{a_n = a_{n - 1} + (- 1)^n} \\\\ \mathsf{a_3 = a_{3 - 1} + (- 1)^3} \\\\ \mathsf{a_3 = a_2 + (- 1)} \\\\ \mathsf{a_2 = 2 - 1} \\\\ \boxed{\mathsf{a_3 = 1}}


Terceiro termo: a_4

\\ \mathsf{a_n = a_{n - 1} + (- 1)^n} \\\\ \mathsf{a_4 = a_{4 - 1} + (- 1)^4} \\\\ \mathsf{a_4 = a_3 + 1} \\\\ \mathsf{a_4 = 1 + 1} \\\\ \boxed{\mathsf{a_4 = 2}}


Agora é com você. Encontre \mathsf{a_5}, \mathsf{a_6}, \mathsf{a_7} e efetue a soma dos termos.

Feito isto, diga quanto encontrou como resposta, ok?!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1682
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}