• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite com Modulo em denominador

Limite com Modulo em denominador

Mensagempor orainha » Sex Fev 03, 2017 23:12

Boas,

Sou novo aqui e venho colocar a minha questão e o que fiz para a tentar resolver, ora bem:

lim_{\ x\to2^-}\frac{x-2}{\ |2-x|}

2-x para x<=2 que é o caso ( 2^- ), então

lim_{\ x\to2^-}\frac{x-2}{\ 2-x}

O problema é que não consigo sair da indeterminação. Tenho a solução final de -1, mas preciso de saber como lá chegar

Divisão de polinomios é solução?


Alguém me pode ajudar??


Obrigado.
orainha
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Fev 03, 2017 22:51
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Matemática
Andamento: cursando

Re: Limite com Modulo em denominador

Mensagempor Alvaro UTFPR » Qui Mar 30, 2017 10:41

lim_{\ x\to2^-}\frac{x-2}{\ 2-x}
Eu cheguei em uma solução não muito satisfatória, mas pode ajudar.
Se voce tomar conta que o seu x tende a 2 pela esquerda, ou seja , um número menor que 2(ex:1.99) irá perceber que o módulo de |2-x|-{quando x>=0 2-x || quando x<0 -2+x} é sempre positivo quando se aproxima de 2, dessa forma >>|2-x|=2-x, eliminando o módulo.

Depois desse processo
lim_{\ x\to2^-}\frac{x-2}{\ 2-x} = lim_{\ x\to2^-}\frac{(-x+2).(-1)}{\ 2-x} = -1
Alvaro UTFPR
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Mar 30, 2017 10:26
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite com Modulo em denominador

Mensagempor orainha » Qui Mar 30, 2017 21:42

Certo.

Não respondi a este tópico antes. Mas a solução passa por isso mesmo. Colocar o ''-'' em evidencia e trocar os sinais, equivalente a -1.

lim_{\ x\to2^-}\frac{-(2-x)}{\ 2-x} = -1

Ficamos com a solução final de -1.

Grande Abraço e Obrigado.
orainha
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Fev 03, 2017 22:51
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: