• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite com Modulo em denominador

Limite com Modulo em denominador

Mensagempor orainha » Sex Fev 03, 2017 23:12

Boas,

Sou novo aqui e venho colocar a minha questão e o que fiz para a tentar resolver, ora bem:

lim_{\ x\to2^-}\frac{x-2}{\ |2-x|}

2-x para x<=2 que é o caso ( 2^- ), então

lim_{\ x\to2^-}\frac{x-2}{\ 2-x}

O problema é que não consigo sair da indeterminação. Tenho a solução final de -1, mas preciso de saber como lá chegar

Divisão de polinomios é solução?


Alguém me pode ajudar??


Obrigado.
orainha
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Fev 03, 2017 22:51
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Matemática
Andamento: cursando

Re: Limite com Modulo em denominador

Mensagempor Alvaro UTFPR » Qui Mar 30, 2017 10:41

lim_{\ x\to2^-}\frac{x-2}{\ 2-x}
Eu cheguei em uma solução não muito satisfatória, mas pode ajudar.
Se voce tomar conta que o seu x tende a 2 pela esquerda, ou seja , um número menor que 2(ex:1.99) irá perceber que o módulo de |2-x|-{quando x>=0 2-x || quando x<0 -2+x} é sempre positivo quando se aproxima de 2, dessa forma >>|2-x|=2-x, eliminando o módulo.

Depois desse processo
lim_{\ x\to2^-}\frac{x-2}{\ 2-x} = lim_{\ x\to2^-}\frac{(-x+2).(-1)}{\ 2-x} = -1
Alvaro UTFPR
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Mar 30, 2017 10:26
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite com Modulo em denominador

Mensagempor orainha » Qui Mar 30, 2017 21:42

Certo.

Não respondi a este tópico antes. Mas a solução passa por isso mesmo. Colocar o ''-'' em evidencia e trocar os sinais, equivalente a -1.

lim_{\ x\to2^-}\frac{-(2-x)}{\ 2-x} = -1

Ficamos com a solução final de -1.

Grande Abraço e Obrigado.
orainha
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Fev 03, 2017 22:51
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}


cron