• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Questão] Teorema do Confronto dos Limites

[Questão] Teorema do Confronto dos Limites

Mensagempor elisafrombrazil » Sáb Jan 21, 2017 10:45

Utilie o Teorema do Confronto para provar que se a função f é limitada numa vizinhança de a e g satisfaz

\lim_{x \rightarrow a} g(x) = 0, então \lim_{x \rightarrow a} f(x) . g(x) = 0.
elisafrombrazil
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Sáb Dez 31, 2016 10:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Questão] Teorema do Confronto dos Limites

Mensagempor e8group » Qua Fev 01, 2017 17:14

Hey ! Dizer que f é limitada numa vizinhança de a means que existe uma cosnatante não negativa M e uma vizinhança V de a tal que |f(x)| \leq M para todo x \in V . Nota que |(g(x)| é sempre não negativo .... Daí, mutiplicando ambos lados da desiguladade por |g(x)| vem que
|g(x)| |f(x)| \leq M |g(x)| para todo x \in V ou ainda 0 \leq | f(x)g(x)|  \leq M |g(x)| para todo x \in V .

Daí é só passar ao limite com x \to a e notar que \lim_{x \to \text{ * } } | \cdots | = 0 \iff \lim_{x \to \text{ * } }  \cdots  = 0
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)