• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Questão] Teorema do Confronto dos Limites

[Questão] Teorema do Confronto dos Limites

Mensagempor elisafrombrazil » Sáb Jan 21, 2017 10:45

Utilie o Teorema do Confronto para provar que se a função f é limitada numa vizinhança de a e g satisfaz

\lim_{x \rightarrow a} g(x) = 0, então \lim_{x \rightarrow a} f(x) . g(x) = 0.
elisafrombrazil
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Sáb Dez 31, 2016 10:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Questão] Teorema do Confronto dos Limites

Mensagempor e8group » Qua Fev 01, 2017 17:14

Hey ! Dizer que f é limitada numa vizinhança de a means que existe uma cosnatante não negativa M e uma vizinhança V de a tal que |f(x)| \leq M para todo x \in V . Nota que |(g(x)| é sempre não negativo .... Daí, mutiplicando ambos lados da desiguladade por |g(x)| vem que
|g(x)| |f(x)| \leq M |g(x)| para todo x \in V ou ainda 0 \leq | f(x)g(x)|  \leq M |g(x)| para todo x \in V .

Daí é só passar ao limite com x \to a e notar que \lim_{x \to \text{ * } } | \cdots | = 0 \iff \lim_{x \to \text{ * } }  \cdots  = 0
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 13 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.