• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exercicio resolvido

exercicio resolvido

Mensagempor adauto martins » Ter Jul 26, 2016 17:43

provar a irracionalidade do numero e=2.71...
soluçao:
a funçao {e}^{x}expandida em uma serie de taylor prox. a zero é dado por:
{e}^{x}=\sum_{k=1}^{\infty}{x}^{k}/k!,q. pode ser escrita como:
{e}^{x}=\sum_{k=1}^{n}({x}^{k}/k!)+{r}_{k},onde {r}_{k}={d}^{k+1}e(\varepsilon).{\left|{x}^{k+1} \right|}/(k+1)!,e \varepsilon \in (0,x),{d}^{k+1}e(\varepsilon)é a (k+1) derivada de {e}^{x},no ponto \varepsilon e tal q.\lim_{k\rightarrow \infty}{r}_{k}=0...
e=1+1/n!+1/2!+...+1/n!+{r}_{k}(1) e tal que:
{r}_{k}(1)={d}^{k+1}e(\varepsilon).1/(n+1)!={e}^{\varepsilon}/(n+1)!\prec 3/(n+1)!(por que?)...
se tomarmos e=p/q...p,q\succ 0,p,q \in N...,teremos:
p/q=(1+1/2!+1/3!+...+1/n!)+{r}_{k}(1)\Rightarrow n!p=q.((1+1/2!+...+1/n!)+n!.{r}_{k}(1))\Rightarrow n!{r}_{k}(1)\in N,fato q. nao se verifica,pois:
n!{r}_{k}(1)\prec n!3/(n+1)!=3/(n+1)\preceq 1,p/n\succeq 2...cqd...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 52 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.