• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Duvida Integral Definida

Duvida Integral Definida

Mensagempor douglasnickson » Dom Jul 03, 2016 01:39

Olá pessoal, estou com uma lista de exercicio da disciplina sinais e sistemas e me deparei com a seguinte questão:

se f é uma função par e contínua no intervalo [-a,a] então:

Imagem

Gostaria de saber como eu faço pra chegar no resultado, se possível digam o passo a passo e quais regras eu devo usar, e fundamental saber isso na disciplina.
douglasnickson
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Jan 30, 2016 13:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Telemática
Andamento: cursando

Re: Duvida Integral Definida

Mensagempor e8group » Dom Jul 03, 2016 20:52

Lembre que uma função f (definida num dominio simetrico ) é dita ser par se f(x) = f(-x) para todo x . Faça o esboço do gráfico de alguns exemplos f(x) = x^2  ;  a = 2 , f(x) = cos(x) ;  a = \pi/2 para fixar ideias ..Qual o comportamento de função continua par genérica num compacto simétrico [-2,2] , [-5,5], -[20,20] ou [-a,a] ...O que significa \int_{-a}^{a} f(x) dx geometricamnete??? Corresponde a area com sinal da area delimitada pela gráfico da função , eixo x , e as retas verticais x = -a e x = a ... So para fixar ideias supor f(x) \geq 0 .. Chame a região de R .. Assim , Area(R) \equiv  \int_{-a}^{a} f(x) dx ..Esta região se decompõe como união de duas regiões R_1 , R_2 cuja interseção é uma região tem medida (area) nula .. Quem são elas ??
Logo pela atividade da integral Area(R) = Area(R_1) + Area(R_2) .. Observe que R_1 pode ser obtida reflexão como reflexão de R_2 sobre o eixo y R_1 \ni (x,y) \mapsto (-x,y)   \in R_2 ... Intuitivamente , Area(R_1) = Area(R_2) .. Logo Area(R) = 2 Area(R_1) = 2 \int_{0}^{a} f(x) dx .. Isto é intuitivo e nos leva a conjeturar oq vc postou .. A prova por sua vez é bem simples .. Basta verificar que

\int_{-a}^0 f(x)dx = \int_{0}^{x} f(x) dx . Dica use o fato que f é par + faça uma subsituição u = -2x ...
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Duvida Integral Definida

Mensagempor douglasnickson » Dom Jul 03, 2016 22:37

Primeiramente valeu pelas dicas santhiago, então, a teoria eu atendi, mas não to conseguindo efetuar o passo a passo dos cálculos até chegar no resultado final, parte e separar a integral em dois intervalos ok, mas e depois o que eu devo fazer? tem alguma forma pra mim utilizar?
douglasnickson
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Jan 30, 2016 13:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Telemática
Andamento: cursando

Re: Duvida Integral Definida

Mensagempor e8group » Dom Jul 03, 2016 22:53

Chame de L:=\int_{0}^{a} f(x) dx (Atenção a variável x é muda , de modo que L=  \int_{0}^{a}  f(u) du  =  \int_{0}^{a}  f(z) dz etc )
Vamos mostrar que \int_{-a}^{0} f(x) dx = L . Daí o resultado segue já que a integral de f sobre [-a,a] é a soma destas integrais .

Ora, se f é par , então f(x) = f(-x) para todo x , logo \int_{-a}^{0} f(x) dx = \int_{-a}^{0} f(-x) dx .
Agora faça uma substituição u  = -x .Feito isto , verifique que (após trocar dx por -du e atualizar os limites de integração )
\int_{-a}^0 f(-x) dx = - \int_{a}^{0} f(u) du  = \int_{0}^{a} f(u) du = L .

Obs.: Vale um resultado análogo para ímpar no lugar de par , mas o valor da integral será zero .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Duvida Integral Definida

Mensagempor douglasnickson » Dom Jul 03, 2016 23:53

Agora acho que entendi, ai no caso no final qnd trocar o U pelo -x por ser par eu posso fazer o processo inverso e voltar o x e o -du qnd eu trocar os limites cancela o menos não eh isso?
ai voltando pra x eu somo com a outra integral e da o resultado da questão correto?

Agora vou fazer pra parte impar que também pede, o processo e o mesmo neh?
douglasnickson
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Jan 30, 2016 13:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Telemática
Andamento: cursando

Re: Duvida Integral Definida

Mensagempor adauto martins » Ter Jul 05, 2016 15:25

primeiramente mostrarei q. sendo f(x) uma funçao par,teremos:
a)
\int_{-a}^{0}f(x)dx=\int_{0}^{a}f(x)dx...de fato,pois
\int_{-a}^{0}f(x)dx=-\int_{-(-a)}^{0}f(-x)dx=-\int_{a}^{0}f(-x)dx=\int_{0}^{a}f(-x)dx=\int_{0}^{a}f(x)dx...
entao...
I=\int_{-a}^{a}f(x)dx=\int_{-a}^{0}f(x)dx+\int_{0}^{a}f(x)dx,por a)teremos entao:
I=\int_{0}^{a}f(x)dx+\int_{0}^{a}f(x)dx=2.\int_{0}^{a}f(x)dx...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 679
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D