• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada] Parcial como Taxa de Variação

[Derivada] Parcial como Taxa de Variação

Mensagempor Whitesttax » Ter Abr 26, 2016 17:18

Boa tarde.
Não estou conseguindo resolver o seguinte problema:
Um reservatório de areia tem o formato de uma pirâmide invertida de base quadrada. A taxa de vazão da areia deste reservatório diminui a uma velocidade de 40pi cm^3/min.
Esta areia forma no chão um monte cônico. O volume total de areia no reservatório era 243pi cm^3. Determine a velocidade com que aumenta a altura do cone quando um terço da areia já caiu do reservatório. Sabendo que neste instante a altura do monte é 3cm e o raio aumenta uma taxa de 0,3cm/min.

O que já tentei fazer foi aplicar a fórmula do volume do cone, que se estou certo é V = pi*r^2*h / 3. Aí derivei para descobrir a altura mas está dando um resultado negativo, e bem errado (a resposta certa é 1.28cm/min)
Um ponto que talvez errei foi usar a taxa de variação do volume da pirâmide na conta debaixo sem mudar nada, não sei o que teria que mudar... O raio eu consegui aplicando a fórmula do volume também, só que sem derivar.
Mais ou menos assim...
-40\pi = 2\pi*r*h/3 *0,3 + \pi*r^2/3 * \partial h/\partial t

Obrigado!
Whitesttax
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Mar 16, 2015 23:04
Formação Escolar: ENSINO MÉDIO
Área/Curso: ciências da computação
Andamento: cursando

Re: [Derivada] Parcial como Taxa de Variação

Mensagempor adauto martins » Sáb Mai 07, 2016 21:21

encontrei um valor prox. ao valor da resposta,vamos á soluçao:
1){V}_{c}/{V}_{p}=((1/3)\pi.{r}^{2}.{h}_{c})/((1/3).{l}^{2}.{h}_{p})=(\pi.{r}^{2}.{h}_{c})/({l}^{2}.{h}_{p})=1,pois os volumes serao os mesmos...
\Rightarrow {h}_{c}/{h}_{p}={l}^{2}/(\pi.{r}^{2})\Rightarrow {h}_{c}={h}_{p}.{l}^{2}/(\pi.{r}^{2})...
2){V}_{p}=(1/3).{l}^{2}.{h}_{p}\Rightarrow (243.3.\pi)={l}^{2}.{h}_{p}\Rightarrow {l}^{2}.{h}_{p}=729.\pi...
substituindo o resultado na prim.relaçao teremos:
{h}_{p}=(729.\pi)/(\pi.{r}^{2})\Rightarrow r=\sqrt[]{729/3}=\sqrt[]{243}\Rightarrow {h'}_{p}=-(729.\pi).2.r.r'/({r}^{4})=-(729.\pi.2).r'/{r}^{3}=-(1458.\pi)/{(\sqrt[]{243)}}^{3})...{h'}_{p} \simeq -1.21 (cm/mit),osinal negativo é pq a areia esta caindo,questao de referencial...em valor absoluto é o calculado...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Derivada] Parcial como Taxa de Variação

Mensagempor adauto martins » Dom Mai 08, 2016 00:15

caro Whitesttax e colegas do site,
a resoluçao apresentada por mim do exercicio esta incorreta,pois nao levei em consideraçao a açao da gravidade sobre a areia q. cai da piramide...entao em ocasiao oportuna irei apresenta uma soluçao correta,no mais obrigado...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Derivada] Parcial como Taxa de Variação

Mensagempor adauto martins » Qua Mai 11, 2016 12:21

vamos considerar a areia q. escoa fazendo o cone,dessa forma podemos eliminar o fator da gravidade q. atua na areia da piramide,entao:
a vazao da areia da piramide sera a mesma q. forma o cone,pois o tempo de esoamento da areia da piramide,sera o mesmo da formaçao do cone,logo:
(d/dt){V}_{p}=(d/dt){V}_{c}\Rightarrow (d/dt){V}_{c}=(dV/dh).(dh/dt)=V'(h).h'(t)(aqui regra da cadeia)1)40.\pi=V'(h).h'(t)...temos q.:
{V}_{c}=(1/3).\pi.{r}^{2}.h,p/ o instante pedido teremos:
(243.\pi)/3=(1/3).\pi.{r}^{2}.h\Rightarrow r=\sqrt[]{243/3}=9...
dV/dh=(1/3).\pi.{r}^{2}=(1/3).\pi.81=27.\pi...
voltando a 1º eq.
40.\pi=27.\pi.h'(t)\Rightarrow h'(t) \simeq 1.48...bom é isso,obrigado
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 49 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D