por Gabrielmelocampos20 » Qui Nov 12, 2015 20:46
Em que ponto da curva F (x)=×^3-×^2-1 a reta tangente tem ângulo de inclinação igual a pi/4
-
Gabrielmelocampos20
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Nov 12, 2015 20:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Eletrica
- Andamento: cursando
por Cleyson007 » Sex Nov 13, 2015 08:35
Bom dia Gabriel!
Seja muito bem-vindo ao site do Ajuda Matemática
Amigo, antes de te orientar quanto ao problema proposto, gostaria de lhe apresentar o meu trabalho enquanto professor de Matemática:
viewtopic.php?f=151&t=13614Por favor me envie um e-mail ou mensagem no WhatsApp caso tenha interesse. Posso lhe ajudar bastante em seus estudos!Ok?
A derivada de uma função é a inclinação da reta tangente (m = tg ?). Então, se derivarmos a função F(x) = ׳ - ײ - 1, obtemos F'(x) = 3x² - 2x (o que eu fiz foi apenas derivação da função F(x) que é polinomial - aplicação da Regra da Potência).
? = pi/4 ---> tg(pi/4) = 1
3x² - 2x = 1
3x² - 2x - 1 = 0
Resolvendo a equação do 2° grau acima, encontramos como raízes: x' = 1 ou x" = -1/3. Para encontrar os pontos, basta substituir esses valores, um a um, na função F(x) = ׳ - ײ - 1. Consegue concluir sozinho?
Abraço e bons estudos.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Limites, inclinação da reta tangente
por dani741 » Qua Jul 03, 2013 19:53
- 1 Respostas
- 1695 Exibições
- Última mensagem por e8group

Qua Jul 03, 2013 21:56
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas]- Inclinação da tangente
por Ana_Rodrigues » Qui Fev 23, 2012 15:51
- 4 Respostas
- 3137 Exibições
- Última mensagem por Ana_Rodrigues

Qui Fev 23, 2012 21:10
Cálculo: Limites, Derivadas e Integrais
-
- Estimar o valor da inclinação da reta tangente
por samra » Sáb Abr 14, 2012 16:36
- 0 Respostas
- 833 Exibições
- Última mensagem por samra

Sáb Abr 14, 2012 16:36
Cálculo: Limites, Derivadas e Integrais
-
- Derivadas - reta tangente
por aline_n » Qui Abr 28, 2011 10:03
- 1 Respostas
- 1615 Exibições
- Última mensagem por LuizAquino

Qui Abr 28, 2011 10:16
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas]Eq da reta tangente e normal
por may » Ter Mai 14, 2013 04:41
- 1 Respostas
- 1899 Exibições
- Última mensagem por adauto martins

Qua Out 15, 2014 21:02
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.