por barbara-rabello » Dom Nov 01, 2015 20:45
Oi pessoal, comecei a estudar ponto flutuante e não consegui resolver todo esse exercício. Alguém pode me ajudar?
Seja o uma máquina com o sistema F(10,3,-5,5), determine:
1 - O número de valores representáveis de F dessa máquina.
2 - O menor valor a representável.
3 - O menor valor b representável.
4 - O maior valor c negativo, representável.
5 - O menor valor d representável.
Bom, resolvi fazendo uma ilustração e consegui responder as seguintes perguntas:
2) 0,999.10^5.
3) 0,999.10^(-5).
4) -0,001.10^(-5).
5) -0,001.10^5.
Não tenho certeza se estão corretas e não sei como determinar o número de valores representáveis na máquina.
Agradeço a quem puder me ajudar!!!
-
barbara-rabello
- Usuário Dedicado
-
- Mensagens: 49
- Registrado em: Sex Mar 02, 2012 16:52
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Calculo Numérico - Sist. Ponto Flutuante
por marinalcd » Qui Mar 24, 2016 19:00
- 0 Respostas
- 2239 Exibições
- Última mensagem por marinalcd
Qui Mar 24, 2016 19:00
Cálculo Numérico e Aplicações
-
- [Cálculo Numérico]Problema de Cálculo Numérico
por Piva » Qua Abr 11, 2012 15:10
- 1 Respostas
- 2794 Exibições
- Última mensagem por LuizAquino
Qui Abr 12, 2012 11:58
Cálculo: Limites, Derivadas e Integrais
-
- calculo numerico
por ehrefundini » Qua Mai 07, 2008 10:31
- 1 Respostas
- 1957 Exibições
- Última mensagem por admin
Qua Mai 07, 2008 11:02
Pedidos de Materiais
-
- Calculo Numerico !!
por laisgomes2107 » Sex Set 19, 2008 01:06
- 2 Respostas
- 2729 Exibições
- Última mensagem por admin
Ter Set 23, 2008 18:35
Dúvidas Pendentes (aguardando novos colaboradores)
-
- calculo numerico
por ehrefundini » Sex Mar 06, 2009 10:36
- 1 Respostas
- 2530 Exibições
- Última mensagem por Molina
Sex Mar 06, 2009 13:10
Cálculo Numérico e Aplicações
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois
2°) Admitamos que
, seja verdadeira:
(hipótese da indução)
e provemos que
Temos: (Nessa parte)
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que
seja verdadeiro, e pretendemos provar que também é verdadeiro para
.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:
, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como
é
a
, e este por sua vez é sempre
que
, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.