por Carlos28 » Seg Out 19, 2015 12:25
Alguém poderia me ajudar por favor..
1 - Usando o método de integração por substituição, determine a integral:

.
2 - Usando o método de integração por partes:

, determine a integral:

.
-
Carlos28
- Usuário Ativo

-
- Mensagens: 21
- Registrado em: Qui Nov 08, 2012 08:14
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica
- Andamento: cursando
por nakagumahissao » Seg Out 19, 2015 23:26
Eu faço a diferença. E você?
Do Poema: Quanto os professores "fazem"?
De Taylor Mali
-
nakagumahissao
- Colaborador Voluntário

-
- Mensagens: 386
- Registrado em: Qua Abr 04, 2012 14:07
- Localização: Brazil
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic. Matemática
- Andamento: cursando
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral por Substituição e por Partes
por Jhenrique » Sáb Set 15, 2012 14:59
- 23 Respostas
- 31191 Exibições
- Última mensagem por Jhenrique

Qua Set 26, 2012 21:26
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Substituição e partes
por klueger » Ter Fev 05, 2013 15:42
- 1 Respostas
- 1912 Exibições
- Última mensagem por e8group

Ter Fev 05, 2013 20:34
Cálculo: Limites, Derivadas e Integrais
-
- [INTEGRAL] SUBSTITUIÇÃO E POR PARTES
por FERNANDA_03 » Sex Mar 29, 2013 14:00
- 1 Respostas
- 1801 Exibições
- Última mensagem por young_jedi

Sex Mar 29, 2013 16:08
Cálculo: Limites, Derivadas e Integrais
-
- Integral por substituição ou por partes.
por Sobreira » Sáb Jul 20, 2013 15:03
- 1 Respostas
- 2702 Exibições
- Última mensagem por young_jedi

Sex Jul 26, 2013 20:42
Cálculo: Limites, Derivadas e Integrais
-
- [Integral por partes e substituição]
por vergilxdante » Seg Mar 31, 2014 15:28
- 0 Respostas
- 1825 Exibições
- Última mensagem por vergilxdante

Seg Mar 31, 2014 15:28
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.