por tiago_28 » Ter Mai 19, 2015 20:10
Aplicando a Regra de L'Hôpital no limite abaixo estou encontrando

, mas o gabarito informa que o limite não existe

Como mostrar que esse limite não existe? Lembrando que preciso calcular isso usando L'Hôpital.
-
tiago_28
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Ter Mai 19, 2015 19:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por lucas7 » Qua Mai 20, 2015 20:45
Aplicando L'Hopital, a primeira derivada dessa função é:

derivando de novo:

sucessivamente:

Assim, verifica-se que mesmo aplicando L'Hopital inúmeras vezes esse limite tende a um quociente de zeros. (Pois sempre haverá x no numerador e denominador)
O gênio, esse poder que deslumbra os olhos humanos, não é outra coisa senão a perseverança bem disfarçada.
Johann Goethe
-
lucas7
- Usuário Parceiro

-
- Mensagens: 53
- Registrado em: Ter Fev 15, 2011 19:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Controle e Automação
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- (limite) L'hôpital
por gui_rottini » Qua Nov 02, 2011 15:51
- 1 Respostas
- 1450 Exibições
- Última mensagem por Neperiano

Sex Nov 04, 2011 14:11
Cálculo: Limites, Derivadas e Integrais
-
- O limite existe?
por Cleyson007 » Sáb Abr 28, 2012 17:00
- 1 Respostas
- 1551 Exibições
- Última mensagem por LuizAquino

Ter Mai 01, 2012 16:36
Cálculo: Limites, Derivadas e Integrais
-
- Existe ou não o limite?
por Cleyson007 » Sáb Abr 28, 2012 17:28
- 2 Respostas
- 1992 Exibições
- Última mensagem por MarceloFantini

Dom Abr 29, 2012 14:14
Cálculo: Limites, Derivadas e Integrais
-
- O limite existe ou não?
por Cleyson007 » Sáb Abr 28, 2012 17:30
- 3 Respostas
- 2159 Exibições
- Última mensagem por Guill

Dom Abr 29, 2012 15:09
Cálculo: Limites, Derivadas e Integrais
-
- Prova de que o limite não existe.
por arthur_ » Sáb Ago 22, 2009 21:29
- 2 Respostas
- 6364 Exibições
- Última mensagem por arthur_

Dom Ago 23, 2009 15:12
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.