• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites no infinito

Limites no infinito

Mensagempor Rosi7 » Sáb Mai 02, 2015 19:13

\lim_{+\infty}\sqrt{x²+1}-\sqrt{x²-1}

Minha colega e eu, estamos tentando desde de ontem responder. A resposta da equação é 0, mas queremos entender o motivo. Muito obrigada!
Obs: Quando cliquei no botão prever a expressão, não aparece esse "A", ou seja é X²+1 , e não XA².
Rosi7
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Mai 02, 2015 18:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física
Andamento: cursando

Re: Limites no infinito

Mensagempor DanielFerreira » Sáb Mai 02, 2015 22:03

Olá Rosi7, sejam bem-vindos!!

\\ \lim_{x \to \infty} (\sqrt{x^2 + 1} - \sqrt{x^2 - 1}) \times \frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}} = \\\\\\ \lim_{x \to \infty} \frac{x^2 + 1 -x^2 + 1}{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}} = \\\\\\ \lim_{x \to \infty} \frac{2}{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}} = \\\\\\ \frac{2}{\sqrt{\infty} + \sqrt{\infty}} = \\\\\\ \frac{2}{\infty} = \\\\\\ \boxed{0}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Limites no infinito

Mensagempor Rosi7 » Dom Mai 03, 2015 12:26

Muito obrigada! DEUS abençoe você!
Rosi7
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Mai 02, 2015 18:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física
Andamento: cursando

Re: Limites no infinito

Mensagempor DanielFerreira » Dom Mai 03, 2015 15:50

Muito obrigado Rosi! :)
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.