• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Encontrar Fórmulas de Física com Integrais

Encontrar Fórmulas de Física com Integrais

Mensagempor Josi » Ter Mar 16, 2010 22:21

Num trabalho foi dada a seguinte questão:
Uma partícula, em movimento unidimensional, possui aceleração a=-3x (m/s²). Sabendo-se que no tempo t=0s, V=0 e X=0, encontre equações para a velocidade e posição para qualquer instante de tempo. Calcule o deslocamento entre t=1s e t=3s.

Como a aceleração não é constante, sei que são válidas apenas as relações gerais, tentei achar primeriamente a equação da velocidade usando a relação a=V.\frac{dV}{dx}, substituindo a por -3x, pode se fazer a separação de variáveis e encontra-se a seguinte integral: \int_{0}^{x}-3x.dx = \int_{0}^{V}V.dv, o problema é que ao resolvê-la no final encontro uma raiz de número negativo.

Por favor, me ajudem, tenho que entregar o trabaho até sexta-feira.
Josi
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Set 10, 2009 16:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Computação
Andamento: cursando

Re: Encontrar Fórmulas de Física com Integrais

Mensagempor Molina » Ter Mar 16, 2010 22:46

Boa noite, Josi.

Acho que o que ele quer é que você use as propriedades de derivada e integral, dado a aceleração.

Sabemos que a derivada da posição é a velocidade. E a derivada da velocidade é a aceleração. Então fazendo o trajeto contrário, temos que a integral da aceleração é a velocidade. E a integral da velocidade é a posição.

Fazendo isso você encontrará a equação geral da velocidade e da posição.

Só confirme se a aceleração é mesmo a=-3x ou a=-3t, já que t é a unidade de tempo e x a de posição.

Depois tento colocar as contas.

Estou de saída.

:y:
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Encontrar Fórmulas de Física com Integrais

Mensagempor Josi » Qua Mar 17, 2010 21:35

A aceleração é a=-3x mesmo. Hoje juntamos um grupo na escola e tentamos fazer novamente e chegamos nos seguintes cálculos:

\int_{0}^{x}-3x.dx = \int_{0}^{V}V.dV

\frac{{-3x}^{2}}{2}=\frac{{V}^{2}}{2}

\left({-3x}^{2} \right)^{2} = \left({V}^{2} \right)^{2}

{9x}^{4}={V}^{4}

V=x.\sqrt[4]{9}

Não sei se está certo elevar os dois membros ao quadrado para sumir o negativo, mas foi a única alternativa que pensamos.

Em seguida, para fazer a outra integral, os cálculos seguiram-se assim:

V=\frac{dx}{dt}

\sqrt[4]{9}.x=\frac{dx}{dt}

dt=\frac{dx}{1,73x}

\int_{0}^{t}dt=\int_{o}^{x}\frac{dx}{1,73x}

t=\frac{1}{1,73}.\left(ln x - ln 0\right)

O problema é que chegamos em outra indeterminação, afinal ln 0 não existe.
Neste ponto paramos outra vez. Se vc tiver uma solução eu ficarei muito grata.
Josi
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Set 10, 2009 16:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 60 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D