por isabelrebelo » Qui Abr 23, 2015 17:24
![\int_{1}^{\infty}\frac{{(x+1)}^{\alpha}}{\sqrt[3]{{x}^{6}+x+1}} \int_{1}^{\infty}\frac{{(x+1)}^{\alpha}}{\sqrt[3]{{x}^{6}+x+1}}](/latexrender/pictures/c58d3e3b0074cf4196c3f265afbd55a0.png)
Determine para que valores de alfa pertencente a R a integral imprópria converge.
-
isabelrebelo
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qui Abr 23, 2015 16:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em quimica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral Imprópria
por CrazzyVi » Seg Set 27, 2010 17:13
- 5 Respostas
- 6874 Exibições
- Última mensagem por menino de ouro

Qui Jan 24, 2013 13:43
Cálculo: Limites, Derivadas e Integrais
-
- Integral impropria
por menino de ouro » Dom Jan 13, 2013 17:04
- 3 Respostas
- 2291 Exibições
- Última mensagem por thejotta

Seg Jan 14, 2013 00:11
Cálculo: Limites, Derivadas e Integrais
-
- Integral Imprópria
por Man Utd » Sex Ago 09, 2013 16:09
- 0 Respostas
- 1169 Exibições
- Última mensagem por Man Utd

Sex Ago 09, 2013 16:09
Cálculo: Limites, Derivadas e Integrais
-
- Integral impropria
por vanu » Qui Dez 12, 2013 20:05
- 1 Respostas
- 1297 Exibições
- Última mensagem por Man Utd

Sex Dez 13, 2013 11:22
Cálculo: Limites, Derivadas e Integrais
-
- [Áreas] Integral Imprópria
por klueger » Qua Fev 27, 2013 09:40
- 1 Respostas
- 1709 Exibições
- Última mensagem por young_jedi

Qua Fev 27, 2013 13:55
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Exercicios de polinomios
Autor:
shaft - Qua Jun 30, 2010 17:30
Então, o exercicio pede para encontrar

.
Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !
Assunto:
Exercicios de polinomios
Autor:
Douglasm - Qua Jun 30, 2010 17:53
Bom, se desenvolvermos isso, encontramos:
Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):
Somando a primeira e a segunda equação:
Finalmente:
Até a próxima.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.