• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral dupla - Dúvida

Integral dupla - Dúvida

Mensagempor Danilo » Sex Mar 20, 2015 00:35

Estou em dúvida no seguinte exercício. Segue o enunciado seguido de comentários/dúvidas.

Calcule \int_{}^{}\int_{}^{} \left({x}^{2}tgx\cdottgx+{y}^{3}+4 \right)dA, onde D (eu não consegui colocar D debaixo da integral) = {(x,y)/x²+y²\leq2}. ok.

Vi que a região D é uma circunferência de raio \sqrt[]{2}. Observando esse fato e colocando y em função de x eu tenho a seguinte integral:

\int_{-\sqrt[]{2}}^{\sqrt[]{2}} \int_{-\sqrt[]{2-{x}^{2}}}^{\sqrt[]{2-{x}^{2}}}{x}^{2}tgx+{y}^{3}+4 dydx

primeira dúvida: a integral que montei acima está correta?

Se está correta, fazendo o desenvolvimento, eu cheguei a:

\int_{-\sqrt[]{2}}^{\sqrt[]{2}}2\sqrt[]{2-{x}^{2}}{x}^{2}tgx+8\sqrt[]{2-{x}^{2}}dx

E a partir do último ponto eu não consigo mais terminar. Não sei como fazer integração por partes com um produto com 3 fatores... Eu ficaria imensamente grato se alguém puder me ajudar!
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.