• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada de função de duas variáveis] Dúvida numa passagem

[Derivada de função de duas variáveis] Dúvida numa passagem

Mensagempor Fabio Wanderley » Sáb Dez 06, 2014 14:51

Boa tarde!

Alguém poderia mostrar como se chegou a essa igualdade? Não a entendi. É uma passagem de um exercício de funções de duas variáveis aleatórias.

\int_{-\infty}^{\infty}\left[\frac{d}{dz}\int_{-\infty}^{z-x}f_{XY}(x,y)dy\right]dx=\int_{-\infty}^{\infty}f_{XY}(x,z-x)dx

Obrigado!
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: [Derivada de função de duas variáveis] Dúvida numa passa

Mensagempor Fabio Wanderley » Ter Dez 09, 2014 21:45

Consegui falar com um professor. Vou deixar aqui a explicação:

"A igualdade é verdadeira devido ao Teorema Fundamental do Cálculo. Quando se deriva uma integral e a variável de derivação é o limite superior da integral, o resultado é o integrando avaliado nesse ponto."

Depois revisei o conteúdo num livro de Cálculo I. Posto aqui em simbologia matemática a explicação do professor:

Teorema Fundamental do Cálculo:
Seja f contínua em [a,b] e F(x)=\int_{a}^{x}f(t)dt. Então F é derivável e F'(x) = f(x).
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: [Derivada de função de duas variáveis] Dúvida numa passa

Mensagempor adauto martins » Qua Dez 10, 2014 14:51

meu caro fabio,
o q. esta dificultando aqui e o limite inferior da prim. integral...-\infty,pois podemos fazer como se segue:
I=d/dz(\int_{-\infty}^{z-x}(F(x,y)dy)=\int_{-\infty}^{z-x}(\partial F/\partial y) dy=,regra de leibinitz...
I=\int_{-\infty}^{z-x}\partial F(x,y)=F(x,y)[-\infty,z-x]=F(x,z-x)-F(x,-\infty),sem uma definiçao de F(x,y) nada podemos concluir com F(x,-\infty)...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Derivada de função de duas variáveis] Dúvida numa passa

Mensagempor Fabio Wanderley » Qua Dez 10, 2014 20:31

Adauto, pelo que entendi, você está utilizando a seguinte explicação do teorema fundamental do cálculo:

Se G é tal que G'(x) = f(x) para x\in\left[a, \right b], então \int_{a}^{b}f(x)dx=G(b)-G(a)

Observe que o integrando e o intervalo de integração são diferentes da definição que usei.
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: [Derivada de função de duas variáveis] Dúvida numa passa

Mensagempor adauto martins » Qua Dez 10, 2014 21:28

ai meu caro fabio,
claro tbem,nao tem como nao usar o teorema fundamental do calculo,mas ai usei a regra de leibnitz,mas cometi um erro ai,por displicencia(de sempre!)...
a regra de lebnitz p/funçoes de 2 variaveis eh:
d/dy(\int_{a}^{b}(F(x,y)dx))=\int_{a}^{b}(\partial F(x,y)/\partial y)dx,desde de q. F(x,y)seja continua e diferenciavel em (a,b)...qto ao exercicio e o erro...
I=d/dz(\int_{-\infty}^{z-x}(F(x,y)dy)=\int_{-\infty}^{z-x}(\partial F(x,y)/\partial z)dy,meu erro foi
(\partial F/\partial y)dy e nao (\partial F/\partial z)dy,mas persiste o problema do limite p/-\infty...
vamos a exposiçao...z=u(x,y) continua e diferencial em (a,b)...logo
I=\int_{u(-\infty)}^{u(z-x)}(\partial F(x,y)/\partial z)dyI=\int_{u(-\infty)}^{z-x}(\partial F)(dy/\partial u),u=u(x,y),{u}^{-1}(u(x,y))=(x,y)\Rightarrow \partial y=\partial {u}^{-1}=1/\partial uI=\int_{u(-\infty}^{z-x}(\partial F).(\partial y/\partial u)=\int_{-\infty}^{z-x}(\partial F(x,y))=I=\int_{u(-\infty}^{z-x}(\partial F).(\partial y/\partial u)=\int_{-\infty}^{z-x}(\partial F(x,y))=F(x,y)[-\infty,z-x]=F(x,z-x)-F(x,-\infty),q.recai na situaçao anterior...para q. F(x,-\infty)=0,F tem q. ser uma funçao tipo \lim_{(x,y),y\rightarrow-\infty}F(x,y)=0
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 63 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D