por neoreload » Sex Nov 21, 2014 05:26
Pessoal eu tentei fazer essa questão:
Um tanque de armazenamento de petróleo sofre uma ruptura em t = 0 e o petróleo vaza do tanque a uma taxa de

litros por minuto. Quanto petróleo vazou na primeira hora?
Resposta = 4512L
Coloquei o tempo em 60minutos, e tentei fazer assim:

.

. Nessa parte fiz substituição e cheguei eim:
![V=[\frac{100}{-0,01}\cdot e^{-0,01t}]_0^{60} V=[\frac{100}{-0,01}\cdot e^{-0,01t}]_0^{60}](/latexrender/pictures/28e321d7d5fe3c1d931c61ddd42de407.png)
![V=[-10000\cdot e^{-0,01t}]_0^{60} V=[-10000\cdot e^{-0,01t}]_0^{60}](/latexrender/pictures/e4d0b9e231ab2ac97aba77ff2aec958c.png)

Ai que complicou, pq resolvendo isso, eu chego em

que da -5488. Bem diferente da resposta que é 4512. Percebi que se eu diminuir o -5488 de +10000 da a resposta. Mas de onde deveria vir os 10000? errei algo?
-
neoreload
- Usuário Dedicado

-
- Mensagens: 27
- Registrado em: Sáb Ago 09, 2014 16:15
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por felipederaldino » Qua Nov 26, 2014 11:16
neoreload escreveu:Pessoal eu tentei fazer essa questão:
Um tanque de armazenamento de petróleo sofre uma ruptura em t = 0 e o petróleo vaza do tanque a uma taxa de

litros por minuto. Quanto petróleo vazou na primeira hora?
Resposta = 4512L
Coloquei o tempo em 60minutos, e tentei fazer assim:

.

. Nessa parte fiz substituição e cheguei eim:
![V=[\frac{100}{-0,01}\cdot e^{-0,01t}]_0^{60} V=[\frac{100}{-0,01}\cdot e^{-0,01t}]_0^{60}](/latexrender/pictures/28e321d7d5fe3c1d931c61ddd42de407.png)
![V=[-10000\cdot e^{-0,01t}]_0^{60} V=[-10000\cdot e^{-0,01t}]_0^{60}](/latexrender/pictures/e4d0b9e231ab2ac97aba77ff2aec958c.png)

Ai que complicou, pq resolvendo isso, eu chego em

que da -5488. Bem diferente da resposta que é 4512. Percebi que se eu diminuir o -5488 de +10000 da a resposta. Mas de onde deveria vir os 10000? errei algo?
você errou na hora do calculo
Segue a resolução da integral:
![\int_{0}^{60}100{e}^{-0,01t}.dt
100\int_{0}^{60}{e}^{-0,01t}.dt
100.{e}^{-0,01t}.\left(-100 \right)
-10000 \left[{e}^{\left(-0,01 \right)60} - {e}^{\left(-0,01 \right).0}\right]
-10000\left[-0,4512 \right]
r\left(60 \right) = 4512L \int_{0}^{60}100{e}^{-0,01t}.dt
100\int_{0}^{60}{e}^{-0,01t}.dt
100.{e}^{-0,01t}.\left(-100 \right)
-10000 \left[{e}^{\left(-0,01 \right)60} - {e}^{\left(-0,01 \right).0}\right]
-10000\left[-0,4512 \right]
r\left(60 \right) = 4512L](/latexrender/pictures/2e3822a2d643595c8d6a2345de132c35.png)
-
felipederaldino
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qua Nov 05, 2014 17:47
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral para calcular o volume
por neoreload » Sex Mar 13, 2015 05:11
- 1 Respostas
- 3964 Exibições
- Última mensagem por Russman

Sex Mar 13, 2015 17:00
Cálculo: Limites, Derivadas e Integrais
-
- Integral para calcular arco
por neoreload » Sex Mar 20, 2015 07:04
- 2 Respostas
- 3066 Exibições
- Última mensagem por Russman

Seg Mar 23, 2015 01:55
Cálculo: Limites, Derivadas e Integrais
-
- Ajuda para Calcular uma Integral Gaussiana
por Luthius » Qui Jul 12, 2018 09:22
- 0 Respostas
- 4220 Exibições
- Última mensagem por Luthius

Qui Jul 12, 2018 09:22
Cálculo: Limites, Derivadas e Integrais
-
- [Volume] Volume de caixa para carrinho de mão
por MateusDantas1 » Seg Nov 05, 2012 20:12
- 0 Respostas
- 2604 Exibições
- Última mensagem por MateusDantas1

Seg Nov 05, 2012 20:12
Geometria Espacial
-
- Ajuda para resolver equação para calcular velocidade média
por marcorrer » Sex Fev 24, 2012 13:10
- 0 Respostas
- 3493 Exibições
- Última mensagem por marcorrer

Sex Fev 24, 2012 13:10
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.