• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] Usando método da substituição

[Integral] Usando método da substituição

Mensagempor neoreload » Dom Nov 09, 2014 00:36

Pessoal preciso de ajuda nessa questão:

Calcular integral usando método da substituição: \int{x}^{3}\sqrt{{x}^{2}+1}
Utilizando a substituição simples pelo U, nada de tg ainda ^^.

Eu tentei fazer varias vezes, mas nunca consigo sair do começo quando eu tento substituir e chego eim: \int{x}^{2}{U}^{\frac{1}{2}}du. Agradeço muito quem puder deixar o passo a passo o mais detalhado possível. pq como eu disse, me perdi todo mesmo :(
neoreload
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 27
Registrado em: Sáb Ago 09, 2014 16:15
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Integral] Usando método da substituição

Mensagempor e8group » Dom Nov 09, 2014 02:02

Basta fazer u =x^2 + 1 ; Daí a última integral q escrevesse fica

0.5 \int (u-1)u^{1/2} du , pls corrija ...boa sorte !
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Integral] Usando método da substituição

Mensagempor neoreload » Dom Nov 09, 2014 03:16

santhiago escreveu:Basta fazer u =x^2 + 1 ; Daí a última integral q escrevesse fica

0.5 \int (u-1)u^{1/2} du , pls corrija ...boa sorte !


mas pra onde foi o x³? e como vc colocou u-1?
neoreload
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 27
Registrado em: Sáb Ago 09, 2014 16:15
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Integral] Usando método da substituição

Mensagempor e8group » Dom Nov 09, 2014 12:57

Como u = x^2 + 1 então x^2 = u-1 . Observe também que du = 2 x  dx ou seja 0.5 du = x dx . Deste modo ,


\int x^3 \sqrt{x^2 +1}  dx   =  \int x \cdot x^2 \cdot \sqrt{x^2+1}  dx  =   \int \underbrace{x^2}_{u-1} \cdot \sqrt{\underbrace{x^2+1 }_{u} } \cdot \underbrace{x dx}_{0.5 du } = 0.5 \int (u-1)\sqrt{u} du
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59