• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral por frações parciais

Integral por frações parciais

Mensagempor Fernandobertolaccini » Seg Jul 21, 2014 20:02

Calcule:


\int_{}^{}\frac{dx}{(x^2-x)(x-2)}

Resp:\frac{1}{2}lnx-ln(x-1)+\frac{1}{2}ln(x-2) + C

Muito Obrigado !!!
Fernandobertolaccini
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Qui Mai 01, 2014 10:27
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Licenciatura em Física
Andamento: cursando

Re: Integral por frações parciais

Mensagempor e8group » Ter Jul 22, 2014 01:25

Não há muito que fazer ... é conta mesmo ! Comece a notar que

(x^2-x)(x-2) = x(x-1)(x-2) . Desta forma , temos que pela teoria frações parciais existe (A,B,C reais ) tal que

\frac{1}{x(x-1)(x-2)} = \frac{A}{x} + \frac{B}{x-1} + \frac{C}{x-2} .

Determinando A,B e C(faça as contas ) a integral requerida se resume a computar \int \frac{A}{x} + \frac{B}{x-1} + \frac{C}{x-2} dx  =  A \int \frac{1}{x} dx + B \int \frac{1}{x-1} dx + C \int \frac{1}{x-2} dx .

Note que sabemos integrar termos da forma \frac{1}{ax +b} (qual a resposta ?) .

Curiosidade :

É possível determinar A,B,C em termos da derivada do polinômio do denominador aplicado em suas raízes distintas

É o que diz o lemma abaixo

Sejamp,q polinômios com deg(q) = n >  deg(p) e q(x) = \prod_{k=1}^n (x- x_{k}) :   x_i \neq x_j \forall  i \neq j então

\frac{p(x)}{q(x)} =  \sum_{k=1}^{n}  \frac{\alpha_k}{x-x_k} com \alpha_k =  \frac{p(x_k)}{q'(x_k)} , k\in \{1,2 ,\hdots , n\} .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 24 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}