• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada: minimos e máximos

Derivada: minimos e máximos

Mensagempor Fernandobertolaccini » Dom Jul 13, 2014 23:03

Encontre a, b e c de modo que a função f(x) = ax² + bx + c tenha um máximo relativo no ponto P(5,20) e que passe pelo ponto Q(2,10).

resp: a=\frac{-10}{9},b=\frac{100}{9},c=\frac{-70}{9}


Alguém se habilita?
Fernandobertolaccini
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Qui Mai 01, 2014 10:27
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Licenciatura em Física
Andamento: cursando

Re: Derivada: minimos e máximos

Mensagempor e8group » Seg Jul 14, 2014 01:33

Dá para fazer sem derivada .

Completando quadrados :

f(x) = a(x^2 + \frac{b}{a} x + \frac{c}{a})  = a( [x^2 + 2 \cdot x \cdot \frac{b}{2a}  +  \frac{b^2}{4a^2}   ]   - \frac{b^2}{4a^2}  +  \frac{c}{a})   = a(x + \frac{b}{2a})^2  +  c  -  \frac{b^2}{4a} .

Se a < 0 temos que a(x + \frac{b}{2a})^2  \leq 0 para todo x e portanto f(x) assume valor máximo quando x = - \frac{b}{2a} e este valor é c - \frac{b^2}{4a} .Comparando com as condições do enunciado temos

\begin{cases} - \frac{b}{2a} = 5 \\  c - \frac{b^2}{4a} = 20  \end{cases} ou

\begin{cases} - \frac{b}{2a} = 5  \\  c +5 \frac{b}{2} = 20  \end{cases} ou ainda

\begin{cases} -b -10 a = 0   \\  2c +5b = 40  \end{cases}
Agora usamos o ponto Q dado e caímos em um sistema linear 3 por 3


\begin{cases} -b -10 a = 0   \\  2c +5b = 40  \\   4a +2b + c = 10   \end{cases}

Resolvendo obterá :

http://www.wolframalpha.com/input/?i=-b ... +%3D+10+++
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59