• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites de função exponencial

Limites de função exponencial

Mensagempor Silas » Qui Jul 10, 2014 18:12

Pessoal, tenho dúvidas em como resolver algebricamente o seguinte limite:

\lim_{x\rightarrow\infty} ({2}^{x}-{3}^{x})

Intuitivamente, sei que o termo 3^x é dominante em relação a 2^x, logo esse limite é - Inf. Porém, como chegar nesse resultado usando manipulações algébricas. Ou se existe algum desses teoremas que resolva esse meu problema.

Grato.
Silas
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Jul 10, 2014 18:03
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: Limites de função exponencial

Mensagempor young_jedi » Qui Jul 10, 2014 21:23

\lim_{x\to\infty}(2^x-3^x)

oque poderia ser feito é

\lim_{x\to\infty}3^x\left(\left(\frac{2}{3}\right)^x-1\right)

quando x tende para infinito

3^x\to\infty

e

\left(\frac{2}{3}\right)^x\to 0

então teriamos um numero tendendo ao infinito vezes -1 oque resultaria em -\infty
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Limites de função exponencial

Mensagempor Silas » Qui Jul 10, 2014 21:47

Muito obrigado.
Silas
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Jul 10, 2014 18:03
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.