• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivação Implicita

Derivação Implicita

Mensagempor victornakaya » Sáb Jun 28, 2014 20:03

[tex]F(x,y,z) = -{x}^{2}+ {x}_{sen z} + \frac{y}{{z}^{2}} + 1 = 0


Eu fiz desse jeito: df/dx = d0/dx = -2x + senz + x cos*z dz/dx + y/z*2 + 1 =0

A minha dúvida surgiu como faço para derivar y/z*2?
victornakaya
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Ago 21, 2013 21:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Derivação Implicita

Mensagempor young_jedi » Sáb Jul 05, 2014 16:05

você pode reescrever como

\frac{y}{z^2}=y.z^{-2}

e utilizando regra da cadeia e do produto

\frac{dy}{dx}.z^{-2}+y.(-2.z^{-3}).\frac{dz}{dx}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1237
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.