por NathBitencourt » Qua Jun 18, 2014 22:59
Dada a função

determine:
a) A variação da função
b) Máximos e Mínimos
Assim, eu fiz essa questão em minha prova semestral. Eu derivei e cheguei em:

. Só que a partir dai eu não consegui fazer mais nada! Depois de chegar em casa eu continuei a tentar e não conseguia resolver. Depois de desistir eu fui procurar no google para ver se achava algo em relação a isso e eu só acho questões usando integrais (matéria que a gente não viu ainda).
Como ficaram essas respostas sem usar integral?
Agradeço desde já

-
NathBitencourt
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qui Mar 13, 2014 15:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
por Man Utd » Qui Jun 19, 2014 01:22
Olá

Vc derivou errado, a derivada é :

A)
Veja que

é sempre positiva , então resta-nos investigar a função

que é decrescente no intervalo x<0 , crescente no intervalo 0<x<2 e novamente decrescente no intervalo x>2.
B) candidatos a máximo e minimo relativos, veja que x=0 e x=2 anulam a primeira derivada então são pontos criticos , faça o teste da segunda derivada para saber quais são pontos de máximo e de minimo.
-
Man Utd
- Colaborador Voluntário

-
- Mensagens: 155
- Registrado em: Qua Abr 03, 2013 09:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Máximos e Mìnimos Derivadas
por brunojorge29 » Sex Set 30, 2011 10:00
- 1 Respostas
- 1360 Exibições
- Última mensagem por LuizAquino

Sáb Out 01, 2011 13:55
Cálculo: Limites, Derivadas e Integrais
-
- [DERIVADAS] Máximos e Mínimos
por Jefferson_mcz » Seg Jun 10, 2013 11:28
- 0 Respostas
- 1590 Exibições
- Última mensagem por Jefferson_mcz

Seg Jun 10, 2013 11:28
Cálculo: Limites, Derivadas e Integrais
-
- Mínimos e Máximos, dificuldade em determinar derivadas
por letciabr7 » Qua Jun 10, 2015 17:44
- 1 Respostas
- 2304 Exibições
- Última mensagem por nakagumahissao

Ter Out 06, 2015 09:05
Cálculo: Limites, Derivadas e Integrais
-
- [Calculo 1] Máximos e mínimos de uma função
por LuisLemos » Qua Jul 27, 2016 21:27
- 4 Respostas
- 6668 Exibições
- Última mensagem por LuisLemos

Qui Jul 28, 2016 00:49
Cálculo: Limites, Derivadas e Integrais
-
- [maximos e minimos] Função de duas variaveis
por amigao » Ter Nov 26, 2013 19:41
- 0 Respostas
- 805 Exibições
- Última mensagem por amigao

Ter Nov 26, 2013 19:41
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.