• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integrais impróprias

Integrais impróprias

Mensagempor cardoed001 » Dom Jun 08, 2014 17:49

Boa tarde,

Alguém, por favor, poderia me explicar porque a integral \int_{o}^{\infty} cos(\pi*x)dx é divergente?

Eu cheguei na resposta:

\lim_{b\rightarrow\infty} (sin (\pi*b))/\pi (com limite superior b e inferior zero, para calcular a integral definida), mas não intendi porque ela diverge.

Muito obrigado.
cardoed001
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Dom Set 15, 2013 00:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: Integrais impróprias

Mensagempor e8group » Dom Jun 08, 2014 22:15

Justamente por que o último limite está oscilando entre -1 e 1 , e portanto tal limite não nos diz nada . Se tal limite convergisse para algum n° L , então nas diversas formas de b ir para +\infty , estes limites tbm valeriam L .

Por exemplo, tome b = n/2 com n natural .

Note que sin( \pi b) = \sin(\pi \cdot  \frac{n}{2}) =  sin(\frac{\pi}{2} \cdot n ) = \begin{cases}   0    ; n= 2,4,6,8,\hdots  \\ 
1  ;  n= 1 ,5,9,13 \hdots  \\  -1  ;  n = 3,7,11,15 \hdots  \end{cases} .

Verifique !

Ou seja, quanto n for suficiente grande b também o será e o resultado do limite poderá ser 0,1,-1 dependendo de n .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Integrais impróprias

Mensagempor cardoed001 » Dom Jun 08, 2014 22:39

Muitíssimo obrigado,

Então essa oscilação faz com que a integral seja divergente.

Valeu mesmo.
cardoed001
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Dom Set 15, 2013 00:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.