• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral (Quase)Imediata] Número de Neper

[Integral (Quase)Imediata] Número de Neper

Mensagempor blaze » Qua Mai 07, 2014 17:36

Quero resolver a seguinte integral imediata ou quase imediata

\int \frac{{e}^{6x}}{\sqrt{1-{e}^{6x}}}

Com o Microsoft Mathematics posso facilmente saber o resultado, mas não o percebo. Sei que não é necessário usar o método de substituição ou integrar por partes, mas por mais voltas que dê não consigo fazer isto apenas com o inverso da derivada.
blaze
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Mai 07, 2014 17:07
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Integral (Quase)Imediata] Número de Neper

Mensagempor Russman » Qua Mai 07, 2014 19:24

Use o método de substituição. Imagino que você esteja integrando a função com relação a x.

Faça u(x) = 1 - e^{6x}. Desse modo, du = -6 e^{6x} dx e , portanto, a integral se simplifica para

\int - \frac{du}{6\sqrt{u}}

que tem primitiva conhecida.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Integral (Quase)Imediata] Número de Neper

Mensagempor blaze » Qua Mai 07, 2014 19:29

Obrigado :)
blaze
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Mai 07, 2014 17:07
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Integral (Quase)Imediata] Número de Neper

Mensagempor Russman » Qua Mai 07, 2014 19:55

Bons estudos. (:
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: