por lalmeida » Sex Mai 02, 2014 00:49
Alguém pode me ajudar a encontrar a solução de ? ?6ax dx ?
-
lalmeida
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Sex Mai 02, 2014 00:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por alienante » Sáb Mai 03, 2014 15:32
rapaz, seria interessante que você aprendesse a utilizar o editor de formulas, ok?:
![\int_{}^{}\sqrt[]{6ax}dx \int_{}^{}\sqrt[]{6ax}dx](/latexrender/pictures/be7ebb0afedcc910dc1b8bf29f3a5164.png)
; chamando
![u=\sqrt[]{6ax}\rightarrow x=\frac{u^2}{6a}\rightarrow dx=\frac{u}{3a}du u=\sqrt[]{6ax}\rightarrow x=\frac{u^2}{6a}\rightarrow dx=\frac{u}{3a}du](/latexrender/pictures/58d1ac0a6ae603e366897645c6d96989.png)
. Logo
![\int_{}^{}\sqrt[]{6ax}dx=\int_{}^{}\frac{u^2}{3a}du=\frac{1}{3a}\times\frac{u^3}{3}+c=\frac{{(\sqrt[]{6ax})}^{3}}{9a}+c \int_{}^{}\sqrt[]{6ax}dx=\int_{}^{}\frac{u^2}{3a}du=\frac{1}{3a}\times\frac{u^3}{3}+c=\frac{{(\sqrt[]{6ax})}^{3}}{9a}+c](/latexrender/pictures/ed8ef83ea8938bedf00e8723dff14016.png)
-
alienante
- Usuário Dedicado

-
- Mensagens: 43
- Registrado em: Seg Nov 25, 2013 19:18
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- integral envolvendo raiz quadrada
por ronnmmaia » Sex Set 23, 2011 19:50
- 2 Respostas
- 24200 Exibições
- Última mensagem por ronnmmaia

Sáb Set 24, 2011 11:06
Cálculo: Limites, Derivadas e Integrais
-
- [Raiz Cúbica e Raiz Quadrada] Muito difícil achar a solução.
por Leocondeuba » Sáb Mai 11, 2013 19:27
- 2 Respostas
- 7247 Exibições
- Última mensagem por Leocondeuba

Sáb Mai 11, 2013 20:42
Aritmética
-
- Raiz quadrada
por j1a4l0 » Qui Abr 22, 2010 18:05
- 5 Respostas
- 5742 Exibições
- Última mensagem por Neperiano

Sex Abr 23, 2010 09:35
Funções
-
- raiz quadrada
por jose henrique » Seg Ago 16, 2010 16:54
- 1 Respostas
- 2234 Exibições
- Última mensagem por MarceloFantini

Ter Ago 17, 2010 00:03
Álgebra Elementar
-
- [Raiz quadrada de 13] Na mão
por Mickdark » Dom Abr 08, 2012 20:00
- 4 Respostas
- 17400 Exibições
- Última mensagem por Mickdark

Qui Abr 12, 2012 09:56
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Unesp - 95 Números Complexos
Autor:
Alucard014 - Dom Ago 01, 2010 18:22
(UNESP - 95) Seja L o Afixo de um Número complexo

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
Assunto:
Unesp - 95 Números Complexos
Autor:
MarceloFantini - Qui Ago 05, 2010 17:27
Seja

o ângulo entre o eixo horizontal e o afixo

. O triângulo é retângulo com catetos

e

, tal que

. Seja

o ângulo complementar. Então

. Como

, o ângulo que o afixo

formará com a horizontal será

, mas negativo pois tem de ser no quarto quadrante. Se

, então

. Como módulo é um:

.
Logo, o afixo é

.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.