• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite com x tendendo ao infinito

Limite com x tendendo ao infinito

Mensagempor PeterHiggs » Ter Mar 04, 2014 16:53

Fiquei muito intrigado com o seguinte limite:

\lim_{x\rightarrow\infty} \frac{3x^5+2x-8}{\sqrt[2]{x^6+x+1}}

resp.: -\infty

Ao tentar resolvê-lo, multipliquei o numerador e o denominador por (1/(x^3)). No denominador obtive, dentro da raíz, 1+1/x^5 + 1/x^6(e com x tendendo a menos infinito, sobrou 1). No numerador, 3x^2 + 2/(x^2) - 8/(x^3), e com x tendendo à menos infinito, sobra 3*(-inf)^2, o que eu imaginei, daria +infinito. Mas a resposta é - infinito !. Alguém sabe como chegar nisso ?
PeterHiggs
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Mai 25, 2012 18:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Limite com x tendendo ao infinito

Mensagempor Man Utd » Ter Mar 04, 2014 21:37

\lim_{x\rightarrow -\infty} \frac{3x^5+2x-8}{\sqrt[2]{x^6+x+1}}


\lim_{x\rightarrow -\infty} \frac{x^5(3+\frac{2}{x^4}-\frac{8}{x^5})}{\sqrt{x^6(1+\frac{1}{x^5}+\frac{1}{x^6})}}


\lim_{x\rightarrow -\infty} \frac{x^5(3+\frac{2}{x^4}-\frac{8}{x^5})}{|x^3|*\sqrt{1+\frac{1}{x^5}+\frac{1}{x^6}}}


perceba que \sqrt{ x^6} \neq x^3 e sim \sqrt{ x^6} = |x^3|.e veja tbm que : |x|= \begin{cases} x \;\; , \;\; \text{se}  \;\; x \geq 0 \\ -x \;\; , \;\; \text{se} \;\; x<0 \end{cases} , como o limite tende a valores muito grandes e negativos ficamos com:


\lim_{x\rightarrow -\infty} \frac{x^5(3+\frac{2}{x^4}-\frac{8}{x^5})}{-x^3*\sqrt{1+\frac{1}{x^5}+\frac{1}{x^6}}}



-\lim_{x\rightarrow -\infty} \frac{x^5(3+\frac{2}{x^4}-\frac{8}{x^5})}{x^3*\sqrt{1+\frac{1}{x^5}+\frac{1}{x^6}}}



-\lim_{x\rightarrow -\infty} \frac{x^2(3+\frac{2}{x^4}-\frac{8}{x^5})}{\sqrt{1+\frac{1}{x^5}+\frac{1}{x^6}}}=-\infty
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Limite com x tendendo ao infinito

Mensagempor PeterHiggs » Ter Mar 04, 2014 23:08

Cara, muito bom, muitíssimo obrigado ! :y: :)

Eu estava muito preso numa técnica que eu tinha lido no stewart, que ele falava que era pra dividir no numerador e denominador pela potência maior do x no denominador, daí eu acabei me equivocando. Valeu tb pela questão do módulo, isso eu já tava ligado, mas acabei me distraindo ali, sabia q tinha alguma coisa errada ligado a isso !
PeterHiggs
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Mai 25, 2012 18:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 44 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D