• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Continuidade] Exercício

[Continuidade] Exercício

Mensagempor fff » Sex Fev 07, 2014 18:10

Boa noite. Tenho dúvidas neste exercício. A resposta é a D.
Imagem
Avatar do usuário
fff
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sáb Dez 21, 2013 11:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Informática
Andamento: cursando

Re: [Continuidade] Exercício

Mensagempor e8group » Sáb Fev 08, 2014 12:01

Em todas situações ((a), ..., (d)) a função g é contínua , exceto em no ponto 1 . Logo ,qualquer função g das alternativas acarreta a continuidade de f +g em \mathbb{R} \set\{1\} . Basta analisar quais dos itens , a função g +f é contínua em 1 . Tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Continuidade] Exercício

Mensagempor fff » Sáb Fev 08, 2014 12:32

Eu fiz assim:
\lim_{x\rightarrow{1}^{-}}f(x)=2 e \lim_{x\rightarrow{1}^{+}}f(x)=-1 e f(1)=2
A:
\lim_{x\rightarrow{1}^{-}}g(x)=2 e \lim_{x\rightarrow{1}^{+}}g(x)=0
\lim_{x\rightarrow{1}^{-}}(g(x)+f(x))=2+2=4 e \lim_{x\rightarrow{1}^{+}}(g(x)+f(x))=0-1=-1
\lim_{x\rightarrow{1}^{+}}(g(x)+f(x))\neq\lim_{x\rightarrow{1}^{-}}(g(x)+f(x))
f+g não é contínua
B:
\lim_{x\rightarrow{1}^{-}}g(x)=0 e \lim_{x\rightarrow{1}^{+}}g(x)=2
\lim_{x\rightarrow{1}^{-}}(g(x)+f(x))=0+2=2 e \lim_{x\rightarrow{1}^{+}}(g(x)+f(x))=2-1=1
\lim_{x\rightarrow{1}^{+}}(g(x)+f(x))\neq\lim_{x\rightarrow{1}^{-}}(g(x)+f(x))
f+g não é contínua
C:
\lim_{x\rightarrow{1}^{-}}g(x)=1, \lim_{x\rightarrow{1}^{+}}g(x)=4 e g(1)=4
\lim_{x\rightarrow{1}^{-}}(g(x)+f(x))=1+2=3, \lim_{x\rightarrow{1}^{+}}(g(x)+f(x))=4-1=3 e g(1)+f(1)=4+2=6
\lim_{x\rightarrow{1}}(g(x)+f(x))\neq\ f(1)+g(1)
f+g não é contínua
D:
\lim_{x\rightarrow{1}^{-}}g(x)=1, \lim_{x\rightarrow{1}^{+}}g(x)=4 e g(1)=1
\lim_{x\rightarrow{1}^{-}}(g(x)+f(x))=1+2=3, \lim_{x\rightarrow{1}^{+}}(g(x)+f(x))=4-1=3 e g(1)+f(1)=1+2=3
\lim_{x\rightarrow{1}}(g(x)+f(x))= f(1)+g(1)
f+g é contínua

Resposta:D
Avatar do usuário
fff
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sáb Dez 21, 2013 11:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Informática
Andamento: cursando

Re: [Continuidade] Exercício

Mensagempor e8group » Sáb Fev 08, 2014 12:36

Estar correto sim .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Continuidade] Exercício

Mensagempor fff » Sáb Fev 08, 2014 12:41

Obrigada :)
Avatar do usuário
fff
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sáb Dez 21, 2013 11:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Informática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 19 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.