por raimundoocjr » Sáb Dez 14, 2013 11:07
(Livro: Cálculo - Autor: James Stewart - Volume 2 - 7ª Edição - Q. 17 - Pág.: 925)
Utilize coordenadas cilíndricas.
Calcule

, onde E é a região que está dentro do cilindro x²+y²=16 e entre os planos z=-5 e z=4.
Resposta:

-
raimundoocjr
-
por Russman » Dom Dez 15, 2013 02:55
O primeiro passo é observar a simetria da região de interesse. Obviamente, a simetria é cilíndrica. Assim, você deve escrever o diferencial de volume em coordenadas cilíndricas bem como a função do integrando.
Lembre-se que

, onde

. Logo, a integral será

.
Os limites de integração são imediatos. A coordenada

varia de

a

e a coordenada angular de

a

. Agora, como a região de integração é um cilindro de raio

e centrado em

, basta fazer

variando de

a

.
Portanto,

.
Divirta-se.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral tripla em coordenadas cilíndricas e esféricas
por karllatorelli » Ter Jul 15, 2014 15:19
- 0 Respostas
- 1065 Exibições
- Última mensagem por karllatorelli

Ter Jul 15, 2014 15:19
Cálculo: Limites, Derivadas e Integrais
-
- [Coordenadas Esféricas] Integral Tripla
por raimundoocjr » Sáb Dez 14, 2013 00:22
- 0 Respostas
- 1597 Exibições
- Última mensagem por raimundoocjr

Sáb Dez 14, 2013 00:22
Cálculo: Limites, Derivadas e Integrais
-
- Calculo de integral tripla com coordenadas polares
por Fernandobertolaccini » Qua Jan 21, 2015 11:05
- 0 Respostas
- 1284 Exibições
- Última mensagem por Fernandobertolaccini

Qua Jan 21, 2015 11:05
Cálculo: Limites, Derivadas e Integrais
-
- Coordenadas cilíndricas
por Marcos_Mecatronica » Seg Jul 08, 2013 01:38
- 1 Respostas
- 1217 Exibições
- Última mensagem por young_jedi

Seg Jul 08, 2013 22:17
Geometria Analítica
-
- Coordenadas retangulares para cilindricas
por ah001334 » Dom Nov 27, 2011 16:44
- 0 Respostas
- 1372 Exibições
- Última mensagem por ah001334

Dom Nov 27, 2011 16:44
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.