• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Calculo de volumes] Dedução volume do cone

[Calculo de volumes] Dedução volume do cone

Mensagempor ronaldo9nine » Qua Nov 20, 2013 10:31

Olá, gostaria de saber como é feita a dedução da formula do volume do cone por meio de revolução( por integral)

abs.
ronaldo9nine
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Nov 20, 2013 10:27
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Calculo de volumes] Dedução volume do cone

Mensagempor e8group » Qua Nov 20, 2013 20:06

Há uma demonstração aqui http://en.wikipedia.org/wiki/Cone . Também é possível por soma de Riemann ,veja

Considere o seguimento de reta y = \frac{r}{h} \cdot x  , x \in [0,h](r,h > 0) . Girando este segmento em torno do eixo x iremos obter o cone circular de raio re altura h .Dividindo h em n partes iguais e denotando \Deta x = x_{i} - x_{i-1} = h/n, i= 1 , ... , n onde

x_0 = 0 < x_1 = h/n < x_2 = 2h/n < ....< x_n = h .

No intervalo I_{i}= [x_{i-1},x_i] 
,n , a interseção do plano x= x_i com o cone será um circulo cuja área é constante e é igual a A_i = \pi (r/h x_i)^2 = \pi \frac{r^2}{h^2} x_i^2 . Assim o volume de cada fatia é

A_i \cdot \Delta x = \pi \frac{r^2}{h^2} x_i^2 \cdot \Delta x e portanto o volume do cone pode ser aproximado por

\sum_{i=1}^n \pi \frac{r^2}{h^2} x_i^2 \cdot \Delta x . Passando ao limite com n \to + \infty , obtemos a fórmula

\pi \frac{r^2}{h^2} \int_{0}^{h} x^2 dx .

\Delta x vira "dx" , \sum vira \int .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 12:41

pessoal eu achei como resultado 180 toneladas,entretanto sei que a questão está erra pela lógica e a resposta correta segundo o gabarito é 1.800 toneladas.
me explique onde eu estou pecando na questão. resolva explicando.

78 – ( CEFET – 1993 ) Os desabamentos, em sua maioria, são causados por grande acúmulo de lixo nas encostas dos morros. Se 10 pessoas retiram 135 toneladas de lixo em 9 dias, quantas toneladas serão retiradas por 40 pessoas em 30 dias ?


Assunto: dúvida em uma questão em regra de 3!
Autor: Douglasm - Qui Jul 01, 2010 13:16

Observe o raciocínio:

10 pessoas - 9 dias - 135 toneladas

1 pessoa - 9 dias - 13,5 toneladas

1 pessoa - 1 dia - 1,5 toneladas

40 pessoas - 1 dia - 60 toneladas

40 pessoas - 30 dias - 1800 toneladas


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:18

pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:21

leandro moraes escreveu:pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.

valeu meu camarada.