por lucasfut » Seg Nov 18, 2013 01:29
y= 4-x², y= 2-x em torno de x resposta= 108pi/5
-
lucasfut
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Seg Nov 18, 2013 01:11
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por Man Utd » Qui Dez 05, 2013 21:36
olá
vamos utilizar a fórmula:
![\pi \int_{a}^{b} [f(x)]^{2}dx \pi \int_{a}^{b} [f(x)]^{2}dx](/latexrender/pictures/c7ef6dc961ce8d5e92cae2b73dc0841f.png)
,já que é em torno do eixo "x".

calcule para obter a reposta.

-
Man Utd
- Colaborador Voluntário

-
- Mensagens: 155
- Registrado em: Qua Abr 03, 2013 09:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integrais - Volume por Rotação
por elisafrombrazil » Dom Abr 16, 2017 11:17
- 0 Respostas
- 4736 Exibições
- Última mensagem por elisafrombrazil

Dom Abr 16, 2017 11:17
Cálculo: Limites, Derivadas e Integrais
-
- [Integrais Multiplas] Volume do solido
por brunojorge29 » Ter Nov 27, 2012 01:55
- 2 Respostas
- 3767 Exibições
- Última mensagem por Guilherme Pimentel

Seg Jan 13, 2014 09:05
Cálculo: Limites, Derivadas e Integrais
-
- [INTEGRAIS DUPLAS]Calcular o volume
por Tathiclau » Sex Jan 10, 2014 01:55
- 2 Respostas
- 3006 Exibições
- Última mensagem por Guilherme Pimentel

Seg Jan 13, 2014 06:24
Cálculo: Limites, Derivadas e Integrais
-
- [Integrais] Volume de um sólido obtido por rotação
por Leon » Sex Dez 05, 2014 16:05
- 1 Respostas
- 3476 Exibições
- Última mensagem por Leon

Sex Dez 05, 2014 16:52
Cálculo: Limites, Derivadas e Integrais
-
- Calcular o volume usando integrais duplas
por Fernandobertolaccini » Dom Jan 11, 2015 17:33
- 1 Respostas
- 3066 Exibições
- Última mensagem por Russman

Dom Jan 11, 2015 19:21
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.