por LeonardoIB » Sex Nov 15, 2013 18:54
Olá, preciso de ajuda fara fazer os esboços dos gráficosde algumas funções, o enunciado do problema é o seguinte: "Diga o intervalo onde as func~oes abaixo s~ao crescentes, decrescentes, ponto de maximos e mnimos, onde possuem CVC , CVB (concavidade voltada para cima ou para baixo), ponto de inflexão, assintotas horizontais e verticais e com as informacões obtidas, faça um esboçco do gráfico de f. As funções são as seguintes:
y= e^(-1/x)
y= e^(-1/x²)
y= e^(-x²)
-----------------------------------
y= e^(-1/x) - Consegui fazer os limites tendendo à infinito positivo e negativo e os limites laterais tendendo à zero para descobrir assíntotas. Há uma assíntota horizontal em y=1 e uma vertical em x=0 (Quando x tende à zero pela direita, y tende à zero, e quando x tende à zero pela esquerda, y tende ao infinito).
Após isso fiz a derivada primeira, para tentar encontrar pontos críticos, mas cheguei ao resultado: f'(x)= (e^(-1/x))*(1/x²). Após isso tentei igualar 1/x² à zero, mas não consegui resolver, de modo que presumi que não há pontos críticos.
Depois fiz a derivada segunda para encontrar possíveis pontos de inflexão, cheguei ao resultado: f''(x)= (e^(-1/x) * (1/x²) * (1/x²))+((e^(-1/x) * (-x²/x^4). Simplificando, encontrei: f''(x)= (e^(-1/x) * (1/x^4))+ (e^(-1/x) * (-x²)).
De modo que para essa expressão ter como resultado: zero, a única possibilidade seria se (1/x^4))+ (-x²)= 0, certo (afinal de contas o 'e' sempre terá valor positivo)?
Enfim, meu maior problema está em resolver essas igualdades para encontrar os pontos críticos e de inflexão. Eu havia feito um esboço prévio do gráfico me baseando apenas nos limites (e ficou praticamente igual), mas vou ter de refazer por isso, uma das poucas informações que eu sei que deveria ter a mais no meu esboço anterior é um ponto de inflexão em x=1/2 se me lembro bem.
As outras funções são bem semelhantes à essa, então creio que depois de analizar a técnica para encontrar os pontos necessários nessa, eu consigo fazer o mesmo nas outras sem ajuda. Grato desde já.
-
LeonardoIB
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sex Nov 15, 2013 18:06
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Eng. de Controle e Automação
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [AJUDA] construção de gráfico
por haamiah » Sex Out 30, 2009 18:21
- 1 Respostas
- 3196 Exibições
- Última mensagem por Molina

Sex Out 30, 2009 19:00
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas] Ajuda para esboço de gráfico
por thiagorodri » Qua Ago 31, 2011 22:24
- 1 Respostas
- 1724 Exibições
- Última mensagem por LuizAquino

Qua Ago 31, 2011 23:09
Cálculo: Limites, Derivadas e Integrais
-
- [Analise de dados] Construção de grafico
por aftermath » Sex Mai 31, 2013 18:22
- 0 Respostas
- 1095 Exibições
- Última mensagem por aftermath

Sex Mai 31, 2013 18:22
Estatística
-
- Esboço do gráfico
por Dan » Sex Out 02, 2009 09:07
- 1 Respostas
- 3625 Exibições
- Última mensagem por admin

Sex Out 02, 2009 09:26
Cálculo: Limites, Derivadas e Integrais
-
- Esboço do gráfico de derivada
por luiz3107 » Qua Ago 18, 2010 16:28
- 0 Respostas
- 2052 Exibições
- Última mensagem por luiz3107

Qua Ago 18, 2010 16:28
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.