• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral]

[Integral]

Mensagempor dehcalegari » Seg Out 21, 2013 21:42

Boa noite... Fiz uma prova hoje, e uma questão, caiu numa integral para determinar uma certa população.

a integral se nao me engano ficou assim

\int_{}^{}\frac{(P + S) dP}{{P}^{2}(-0,9)-900P}

Como proceder?
dehcalegari
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 85
Registrado em: Qui Abr 04, 2013 09:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: [Integral]

Mensagempor e8group » Ter Out 22, 2013 19:23

Faça uma analogia do integrando da integral da qual você postou com a seguinte integral da função racional : q(x) = \frac{ax+b}{cx^2 +e x} (*) , onde a,b,c,e são constantes não nulas . Buscaremos então uma primitiva de [tex ]q (x) [/tex] ,como o grau do polinômio do numerador é estritamente menor que o do denominador e cx^2 +xb = x(cx+e) , então por decomposição em frações parciais , existem constantes A ,B p/ o qual a igualdade

\frac{1}{x(cx+e)}  = \frac{A}{x} + \frac{B}{cx+e} é verdadeira , que por sua vez , implica


A(cx+e) + Bx = 1 . Substituindo-se x = 0 e x = -e/c nesta última igualdade , obtemos :

A = 1/e e B = -c/e .

Assim ,

\frac{1}{x(cx+e)} =\frac{1}{ex} + \frac{-c}{e(cx+e)}  = \frac{1}{e}  \left(\frac{1}{x} + \frac{-c}{cx+e}\right) .


Logo ,

q(x) = \frac{ax+b}{cx^2 +e x}  = (ax+b)\left(\frac{1}{cx^2 +e x}\right) =  \frac{1}{e}  \left(\frac{ax+b}{x} -c \frac{ax+b}{cx+e}\right) , ou ainda ,


q(x) = \frac{1}{e}  \left(a +\frac{b}{x} -a \frac{cx}{cx+e} - b \frac{c}{cx+e}\right) .Comparando esta última expressão com a primeira (*) , perceba como é fácil encontrar agora uma primitiva de q que a princípio não era .

Basta então integrar e tomar a = 1 , b = S , c = - 0,9 , e = 900 e trocar a variável x por P .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 12:41

pessoal eu achei como resultado 180 toneladas,entretanto sei que a questão está erra pela lógica e a resposta correta segundo o gabarito é 1.800 toneladas.
me explique onde eu estou pecando na questão. resolva explicando.

78 – ( CEFET – 1993 ) Os desabamentos, em sua maioria, são causados por grande acúmulo de lixo nas encostas dos morros. Se 10 pessoas retiram 135 toneladas de lixo em 9 dias, quantas toneladas serão retiradas por 40 pessoas em 30 dias ?


Assunto: dúvida em uma questão em regra de 3!
Autor: Douglasm - Qui Jul 01, 2010 13:16

Observe o raciocínio:

10 pessoas - 9 dias - 135 toneladas

1 pessoa - 9 dias - 13,5 toneladas

1 pessoa - 1 dia - 1,5 toneladas

40 pessoas - 1 dia - 60 toneladas

40 pessoas - 30 dias - 1800 toneladas


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:18

pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:21

leandro moraes escreveu:pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.

valeu meu camarada.